纵谈载人飞行器与及发射平台规划设计的星际航行通用性原 ...

来源:百度文库 编辑:超级军网 时间:2024/05/02 03:05:04
]]
老兄,重复使用是航天器的发展方向,我们总不能指望一次性的火箭和飞船来撑起中国航天,那是我们玩不起的.飞船不是一般的商品,不能搞批量生产.
谁说空天飞机没希望了?走着瞧.
一个飞行器,居然同时具备低空常规飞行能力(常规喷气),高空超高速飞行能力(超燃冲压),和空间飞行能力(常温火箭)。带3套飞行设备居然运输效率比一套的高。;P 大概是用屁股来思考把,这就是空天飞机的写照。

我一直认为,空天飞机就是两超级大国要搞亚轨道超高速飞行器的掩护,逃避外太空飞军事化协定。当然不排除以后科技飞跃了才拿空天飞机作为交通工具的。
Soyuz 7K-L1

--------------------------------------------------------------------------------


L1 Overhead - Soyuz 7K-L1 circumlunar spacecraft.
17,001 bytes. 424 x 253 pixels.


--------------------------------------------------------------------------------


--------------------------------------------------------------------------------
Article Number: 11F91. Manufacturer's Designation: 7K-L1. Class: Manned. Type: Lunar orbiter. Nation: Russia. Manufacturer: Korolev.
The Soyuz 7K-L1, a modification of the Soyuz 7K-OK, was designed for manned circumlunar missions. With a complex genesis, the spacecraft was flown as a replacement for Chelomei's LK-1. The forward living module was deleted, as was the reserve parachute (in order to add an exit hatch in the side of the re-entry capsule). Special on-board systems were added for interplanetary navigation. The SAS launch escape system, more powerful than that for the earth orbital verison of Soyuz, could pull the spacecraft away from a failing Proton booster up to the point of second stage ignition. A Spacecraft Support Cone (OK) was mounted on the forward hatch of the Soyuz capsule to provide a point of attachment for the SAS. This was jettisoned before Block D ignition for translunar injection. The 7K-L1 never actually demonstrated that it could safely take a cosmonaut around the moon and return him to earth until August 1969, a month after the successful American Apollo 11 landing on the moon. By then any thoughts of a manned flight had been abandoned as too little and too late. The Soviet disinformation organs began disseminating the myth that the USSR had never been in the moon race at all. The project was cancelled in 1970.

Korolev had originally designed the Soyuz A-B-V (7K-9K-11K) spacecraft for the circumlunar mission, usng earth orbit rendezvous to assemble the spacecraft and its translunar injection stage. This began development in 1964, but instead Chelomei抯 LK-1 single-manned spacecraft was selected on 3 August 1964 for that mission. The LK-1 was to be placed on a translunar trajectory in a single launch of Chelomei's UR-500K rocket.

On 14 October 1964 Khrushchev was ousted from power, and Chelomei lost his patron. At the same time, at the end of 1964, Korolev reanimated his Soyuz project - not overtly the circumlunar version, but the 7K-OK orbital spacecraft. Korolev's stated purpose was for two of these spacecraft to demonstrate rendezvous and docking in earth orbit. But this was not exactly what he really intended.



--------------------------------------------------------------------------------
Panel Soyuz 7K-L1 - Control panel of the circumlunar version of Soyuz.
Credit: © Mark Wade. 12,497 bytes. 723 x 288 pixels.


--------------------------------------------------------------------------------

On 25 October 1965, less than three months before his death, Korolev regained the project for manned circumlunar flight. He would use a derivative of the 7K-OK, the 7K-L1, in place of Chelomei抯 LK-1. This would still be launched by Chelomei抯 large UR-500K rocket, but with a Block D translunar injection stage taken from Korolev抯 N1. Originally Korolev considered that the 7K-L1, for either safety or mass reasons, could not be boosted directly by the UR-500K toward the moon. Therefore he envisioned launch of the unmanned 7K-L1 into low earth orbit, followed by launch and docking of a 7K-OK with the 7K-L1. The crew would then transfer to the L1, which would then be boosted toward the moon.
After the death of Korolev OKB-1 was taken over by Vasiliy Pavlovich Mishin. It was decided that the Soyuz 7K-L1 could be lightened enough to be launched toward the moon safely by the UR-500K/Block D combination without an additional ferry flight of the 7K-LOK. This became the final baseline for the mission.

The L-1 was officially developed according to the decrees of 3 August 1964 and 25 October 1965. It consisted of the 11S824 Block D rocket stage and the 11F91 7K-L1 spacecraft, and the Block L-1 SAS (launch escape system). The L1 had a total mass of 27.5 tonnes at ignition of the Block D stage, which occurred at suborbital velocity. The Block D burned for 160 seconds the first time, placing the complex into an earth parking orbit. At translunar injection, total mass was 18.2 tonnes.



--------------------------------------------------------------------------------
L1 instrument module - The service module of the Soyuz 7K-L1 / Zond manned circumlunar spacecraft.
Credit: © Mark Wade. 42,758 bytes. 478 x 397 pixels.


--------------------------------------------------------------------------------

The Block D was derived from the N1-L3 moon landing braking stage. The spherical liquid oxygen oxidiser tank was of titanium and was enclosed by thermal insulation blankets. The toroidal fuel tank was also of titanium. The 11D58 engine had a thrust of 8.5 tonnes and a specific impulse of 349 seconds. It was derived from the 8D726 rocket engine of the 8K713 GR-1 Global Rocket, which itself was derive from the S1.5400 Block L of the 8K78 Monlniya launch vehicle.
The 7K-L1 was a modified Soyuz 7K-OK. The forward living module was deleted, as was the reserve parachute (in order to add an exit hatch in the side of the re-entry capsule). Special on-board systems were added for interplanetary navigation. The SAS launch escape system, more powerful than that for the earth orbital verison of Soyuz, could pull the spacecraft away from the failing booster up to the point of second stage ignition. A Spacecraft Support Cone (OK) was mounted on the forward hatch of the Soyuz capsule to provide a point of attachment for the SAS. This was jettisoned before Block D ignition.

In February 1967 the government approved an integrated L1/L3 project plans indicating a first manned L1 circumlunar mission as early as June 1967. Unmanned test flights were equipped with photography equipment, radiation measuring instruments, and biological specimens.



--------------------------------------------------------------------------------
Zond motor - The Soyuz 7K-L1 rocket engine as developed for the circumlunar flights. This deleted the backup engine (presumably the reaction control system thrusters were powerful enough to accomplish mid-course corrections if the main engine failed).
Credit: © Mark Wade. 40,443 bytes. 317 x 402 pixels.


--------------------------------------------------------------------------------

On March 10 1967 Cosmos 146 was launched in the first flight test of hardware for the project. The boilerplate Soyuz 7K-L1 was launched by a Proton into the planned highly elliptical earth orbit. The Block D stage functioned correctly in its first test, putting the spacecraft into a translunar trajectory. The spacecraft was not aimed at the moon and no recovery was planned or attempted. This successful launch created a false confidence just before the string of failures that would follow. On April 8 Cosmos 154 reached earth orbit but the Block D translunar injection stage failed to fire (ullage rockets, which had to fire to settle propellants in tanks before main engine fired, were jettisoned prematurely). The spacecraft burned up two days later when its orbit decayed.
As noted in the chronology that follows, the 7K-L1 never actually demonstrated that it could safely take a cosmonaut around the moon and return him to earth until August 1969, a month after the successful American Apollo 11 landing on the moon. By then any thoughts of a manned flight had been abandoned as too little and too late. The Soviet disinformation organs began disseminating the myth that the USSR had never been in the moon race at all. The project was cancelled in 1970.


--------------------------------------------------------------------------------


--------------------------------------------------------------------------------
Zond rounding Moon
Credit: © Mark Wade. 21,914 bytes. 640 x 113 pixels.


--------------------------------------------------------------------------------

Specification
Craft.Crew Size: 2. Design Life: 7 days. Orbital Storage: 7.00 days. Total Length: 4.9 m. Maximum Diameter: 2.7 m. Total Habitable Volume: 4.00 m3. Total Mass: 5,680 kg. Total Propellants: 700 kg. Primary Engine Thrust: 425 kgf. Main Engine Propellants: Nitric Acid/UDMH. Main Engine Isp: 276 sec. Total spacecraft delta v: 200 m/s. Electric system: 0.80 total average kW. Electrical System: Solar panel span: 9.0 m, area: 11.5 m.

这是当年苏联所设想的联盟载人绕月飞船,乘员两人,总重5600多公斤,计划用质子火箭发射.但最终没有实现载人绕月飞行,真的相当可惜.
]]
我现在对采用NK-33的质子UR-500MK更感兴趣,起飞推力11300 kN,而四级的质子8K82K只有8847 kN,前者比后者大了27.7%。UR-500MK LEO运载能力可以达到30吨,技术上也没有丝毫的困难,毕竟6台发动机只有N1的30台的1/5。
]]
切洛梅伊的UR-530,同样放弃了RD-253发动机,转而采用UR-100N / SS-19的RD-232发动机,数量总共为6组24台,6 x 1870 kN = 11220 kN,与UR-500MK处于同一级别上,也具有30吨的LEO运载能力。
在载具方面,切洛梅伊和杨格尔的思路都是尽可能采用弹道导弹的技术,这一点与冯·布劳恩其实非常接近。美国利用五十年代中期技术水平,源自红石导弹的H-1发动机,以多台并联方式,解决了发动机推力不足,大型推进剂储箱难以制造等问题,完成了土星I和土星IB,为后续火箭奠定了坚实的基础。
在飞船的通用性方面,切洛梅伊的TKS飞船也非常突出。
原帖由 lsquirrel 于 2008-2-15 21:04 发表


;funk 恰恰相反,如果这三套不比一套效率高,那才叫见鬼.
为什么,看看火箭的比冲有多低就知道了


我以前也是这样想的,不过看看十几马赫后面超燃就歇菜了就知道空天飞机还真是个神话。

吸气发动机的比冲自然高(吸气式发动机本来就不用比冲这个参数,否则涡扇比冲比你超燃高得多呢),问题上太空不能总吸气。超燃冲压发动机的理论极限在15马赫。剩下的动能大头还是得靠火箭。

要空天飞机成为现实,至少让超燃冲压能够上20马赫吧
航天飞机,空天飞机之类是天地往返工具和发射载具,其本身设计并不是用来进行星际航行和长时间的轨道滞留,所以这一点上并不具备直接比较的基础。

在技术成熟的情况下,可复用显然是降低成本的有效途径。如果飞机都是一次性的话,那么坐飞机将只有bill gates这样的人才能负担得起

载人星际航行很长一段时间都只是梦想。并不能作为主导航天发展的因素。涉及到很大的资源投入,所以干这类事情还要问问为什么,为什么要干,有什么得益,从而决定要不要干,按多大的规模干,怎么干,再结合技术现状来决定具体方案。否则讨论难免失之空泛。
原帖由 重剑无锋 于 2008-2-15 21:22 发表


我以前也是这样想的,不过看看十几马赫后面超燃就歇菜了就知道空天飞机还真是个神话。

吸气发动机的比冲自然高(吸气式发动机本来就不用比冲这个参数,否则涡扇比冲比你超燃高得多呢),问题上太空不能总吸气 ...


那是因为你前面的计算错了,打回重来
]]
我在玩航天飞机的游戏时,航天飞机有一半的动能是在最后几十秒用最后的燃料完成的。感觉在前面加速很缓慢,已经到轨道高度了仍然是有4,5千米/秒,到了最后燃料快要烧完的时候重量轻,疯狂加速到8千米/秒,简直让人目瞪口呆,不知道飞机里的航天员受不受得了。
楼主真的水平怎么越来越差了,,,水平起飞的好处怎么就一点也不谈,,,,水平起飞就能节省很多氧气重量,,,而在燃料方面,,氧化济占的重量是多少是整个火箭的百分之七十以上,,,,,所以你说的空天飞机要做到几千吨,,开什么玩笑啊,,,,,难道人们只为了飞行时有形象鸟才会去搞空天飞机的吗,,,:D 看来楼主越陷越深,,不能自拔,,,水平越来越低,,:D
原帖由 greatmatch 于 2008-2-16 22:31 发表
我在玩航天飞机的游戏时,航天飞机有一半的动能是在最后几十秒用最后的燃料完成的。感觉在前面加速很缓慢,已经到轨道高度了仍然是有4,5千米/秒,到了最后燃料快要烧完的时候重量轻,疯狂加速到8千米/秒,简直让人目 ...

什么游戏啊?
]]
必须要说一下,X-33是气动塞式发动机...和超燃有什么关系?
空天飞机从50年代的理论,到现在走过了很多年了,超燃冲压尽管短期内没有突破的迹象,但是离实用越来越近了.而且,人类的航天活动,一直是以火箭为唯一的运载工具..
预研这种东西,大概在有些人看来是不需要的吧.
本人从来不反对空天飞机的预研,但我坚决反对将实施载人登月工程的希望寄托在空天飞机之上,而且我也坚决反对中国将研制空天飞机工程提升到国家计划层面.毕竟我对空天飞机是否在未来50年内能够取得技术上的重大突破从来不抱奢望,在这方面保守一点只对中国有好处而决没有坏处,而且以中国这种实力的国家根本经不起重大挫折,一旦走了弯路可以说二十年都喘不过气来.
航天飞机担误了人类空间载人飞行多少时间光阴?!
如果美国不搞航天飞机,仅仅用研制航天飞机与及维持航天飞机机队30年来空间飞行的资金就足以维持一个月球驻人基地到今天;
如果苏联不搞航天飞机,仅仅利用研制航天飞机的资金就完全足够支持起苏联的载人登月工程;
如果欧洲\日本也不搞航天飞机,而是将开发使神\希望航天飞机的资金用于研制飞船,到今天也完全可以实现各自载人航天飞行零的突破.
可是,这一切的希望都完全葬送在该死的航天飞机工程之上;不仅如此,航天飞机工程还完全挤压了巨型\中间运力火箭的生存空间,让取得了巨大成就的土星系列火箭这个已经煮熟的鸭子居然又白白放飞了;而苏联为N1火箭所发展研制的NK33系列发动机与及40吨级氢氧发动机也同样因为航天飞机工程而白白放弃了.
人类载人航天事业之所面临今天这样青黄不接\有气无力与漫无目标的困局,与当年全球大兴航天飞机之风有着密不可分的关系.
空天飞机不能不搞,但是不能作为航天的主力来搞。我认为搞重复使用航天器最先只能搞小型的、功能简单的东西,等在使用过程中技术成熟了,才能向大型化,多功能化方向发展。而且我认为,所谓重复使用应该是指经一次使用之后灌上燃料马上就能再次使用的东西,而不是指像美国航天飞机那样的东西。重复使用只有基本达到这种程度才有可能降低成本。

如果资源真的十分有限,以致搞小型的空天飞机也会挤占搞飞船和空间站的资源,那么空天飞机还是应该押后再搞。
]]
其实中、大型火箭是不可能被重复使用航天器替代的,因为重复使用航天器有结构性的限制,只能应对某些载荷需求、而且这些载荷需求频率高。对于发射频率较低的中、大型航天器,重复使用航天器是无能为力、或者是不划算的。
]]
]]
"理念设想正确并不能说明得了什么,关键是要可行"
---------------------------------------------------------------------------------
空天飞机的所谓优势都是基于一些技术上的“假设”和“前提”,而这些技术上的“假设”和“前提”以目前的技术水平是做不到的。
换一种说法,若是有朝一日我们能做到空天飞机所要求的技术上的“假设”和“前提”,那么把这些“假设”和“前提”用于一次性航天器的话,也同样有可能获得更好的效果。
既然楼主承认美国太空总署在七十年代搞航天飞机是一个错误,,那起码证明美国这帮人的水平不怎么样,,,君不见很多优良的项目也被他砍下马,,就如充气式空间站,,,本来这个方向是好的,,但却要搞个架式的,,,浪费了多少钱才,,,,,就算X-33也未必太过差,,只不是遇上一点难题就被砍下码了,听说是什么用复合材料造的贮燃箱列开,,,才投了十个亿的项目被他们一时冲动就砍了,,,,以他们的这种乱花钱的态度可以搞好空天飞机吗,,,,,,所以如果我们真的要上码,,不见得搞不出空天飞机来,,,,
就算空天飞机技术多难,,,也不见得搞不出来,,,,,,,,,,人家那个搞太空船一号的那个设计师就是比软件优秀的,,但也不见得美国那帮政府官员请他,,,,,现在见到人家成功后,,听说正合作设计太空船三号,,,,,是两级飞机入轨的,,,,,,,我估计这个就会比现在的火箭优秀多了,,,,,,,,,,,,,,,,,,
]]
同样道理,我对后来苏联政府对美国航天飞机工程研制的跟风行为无法理解.原因就在于当年苏联的联盟飞船与空间站组合已经逐渐走向成熟,已经实实在在显视出巨大的实用功能,而且美国政府随后研制天空实验室反而跟了苏联空间站的潮流了.
        因此当年苏联政府应该做的工作就是要努力将自身所具有的空间站与宇宙飞船体系优势更进一步深化之而不是去盲目再做美国人的"跟屁虫".
         事实上由于受自身结构与及货舱体积的先天性限制,航天飞机在大型空间站建设\大型深空无人探测飞船与及星际载人飞船发射上的局限性,分析家们从一开始都是可以直接看得出来的.如航天飞机的货舱体积根本就无法支持人类的月球载人飞行,而火星上没有跑道,月球上没有大气这些基本常识只使是最头脑简单的宇宙工程师都是懂得的.而面对一种充满着种先天缺憾的宇宙飞行器,拥有丰富宇宙航行经验(由其是拥有丰富的组建维持空间站经验,苏联可是领先全球走人货分离道路的,其中的好处早就应该如鱼饮水,心知肚明了)的苏联政府还是肓目地进行跟风,实在愚不可及!
]]
通过上面这些深入分析,我们就能够很好地明白人类今后好长一段时间(至少100多年)里空间探测事业的大体发展方向.
           那就是必须要基于现有高度成熟的火箭\火箭发动机平台与及宇宙飞船平台,尽可能"更多\更远与更好"地实施人类的空间无人或者载人探测事业.力求在现在有限的资金与人力\物力投入基础上实现更多次的空间载人无人探测发射,最终能够将全球空间发射的频率提高到250次至300次以上(如果巨型火箭\中等巨型火箭投入规模化使用,发射次数降低到150次也可以).否则的话人类空间工业将会由于没有足够的需求会半死不活,逐渐衰退灭亡掉的.
          因此,我认为人类的火箭与飞船制造工业必须要引入丰田汽车公司的精实制造思想(事实上美国空军所主导的EELV火箭就如此做了,而俄罗斯的联盟飞船与及联盟火箭早就实现了流水线模块化\标准化生产).只要航天工业企业能够对自身生产潜力的进行深度挖掘,将目前火箭与飞船的生产成本再降低50%乃至一倍是完全可行的,这可要比指望通过研制什么空天飞机之类新概念空间飞行器来降低人类进入宇宙的成本要可生得多\现实得多.
          一旦如此,各国政府与及社会公众对空间事业的热情将会逐渐被重新唤醒回来.因为基于如此低廉与高度安全可靠的火箭与及飞船平台,政治领导人与及社会公众对实施载人登陆月球工程乃至载人登陆火星工程的兴趣都会大大加强.这样人类空间工业系统通过自身的"节能增效"就能够为自身生存发展吸引到更多的投资与公众支持,从而有更多的钱投入到中等运力火箭(起飞推力1500至2500吨)与飞船,巨型火箭(起飞推力3500至6500吨)与巨型飞船乃至超巨型火箭(起飞推力达10000吨以上)与超巨型飞船的研制中去.
        如此,人类的空间工业才能够真正地从航天飞机的挫折中站起来,重新走上良性循环的道路.至未来一百多年之后,人类的科学技术已经发生了重大的革命性进步,那时再上马研制空天飞机之类的东西也为时未晚矣.
         这就是解铃还看系铃人的道理,希望空间工业的同仁们能够好好地明白我这一系列评论的深层意义.否则的话如果人类还是深迷于根本就不彻合目前人类科学技术水平能力实际的空天飞机之类新概述空间飞行器的研制,而不是基于目前人类的技术能力深挖\榨干榨尽火箭与载人飞船的潜力,不仅不能够再创阿波罗时代实现载人登月的壮举,人类整个空间工业估计还得深沦百年之久!因此为了你们自己的饭碗,还是醒醒吧!
许多东西还是看需求。
空天飞机是方向,但何时能够成熟就不知道了。

航天发展包含内容很多,包括空射火箭。美国那个飞机狂人鲁坦正在建设“太空船2号”,以这个为基础,发展出低成本的太空运载工具或者载人设备,也都有一定可能。

所以,航天技术发展远不是只有一条道可走。选择自己能力能达到的,最经济的就可以了。

最后,还是要强调创新。美国之所以这么先进,就是有许多人不怕失败的去创新。美国人对于失败,只要是努力过的,也会给予掌声,创造出很好的创新环境。
冷战结束以来,人类空间发射频率持续下降,面对这种局势研制需要大量投资的昂贵空天飞机不是出路,而且也无法持续吸引政府的投资兴趣.至于创新,关键是要找对方向,否则的话如果长时间无法出成绩,作为投资方的政府与及政治领导人将无法向国民交代,事实上NASA的航天飞机与冒险星计划之所最终被砍掉,就是因为白宫已经不耐烦了.
都省省吧,我们搞飞碟算了。;P ;P ;P
楼主的观点是空天飞机不应该成为主力航天运载器。深有同感。俺设想空天飞机还是要搞一点,但主要方向应该是货运,不是载人。货运也不是指运载大型航天器结构件,而是维持航天器运行时的物资补充等任务,具体说就是进步系列飞船的角色。这部分任务要求的载荷一般不大,但使用次数较多,研制一种载荷较小的无人驾驶空天飞机能够降低发射成本。而且这种空天飞机本身的研制成本也不会很高,因为是无人的并且载荷小。事实上美国曾经进行的“三角快帆”单级可重复使用火箭也是一个方向。
俺认为大型航天器还是使用大推力火箭发射。载人飞行由技术成熟的飞船承担。维持性货运由小型空天飞机负责。
]]
CT的意思就是化学燃烧原理的空间运载工具,火箭最高。
到时候火箭不行了,取代它的将是飞碟了。