11种新粒子(科学松鼠会翻译稿)

来源:百度文库 编辑:超级军网 时间:2024/04/29 00:08:20


What is dark matter? Or gravity? Why is the universe so smooth? There's a particle for every conundrum

什么是暗物质?什么是引力?为什么宇宙如此平滑?每一个难题就会有一个新的粒子

WHEN, in the late 1930s, the Nobel laureate Isidor Rabi learned of the discovery of a heavier version of the electron, he asked "Who ordered that?". Three-quarters of a century on, he could repeat that question many times over. We now know that Rabi's intruder, the muon, is one of a family of three electron-like particles that differ only in their mass.

在20世纪30年代后期,诺贝尔物理学奖获得者Isidor Rabi了解到较重版本的电子的发现,他问:“是谁订的?”。四分之三个世纪以来,同样的问题可以问很多次。我们现在知道,Rabi的不速之客,μ轻子,是类似电子的粒子家族的三者之一,区别仅在于它们的质量。

It doesn't end there. What is called the standard model of matter and its interactions relies on a panoply of particles, some familiar, some less familiar (see diagram). The Large Hadron Collider (LHC), which this month is preparing to smash protons together at CERN near Geneva, Switzerland, for its third full season, is looking for the definitive trace of the only particle predicted by the standard model still to be discovered - the Higgs boson, giver of mass.

这还没有结束。物质及其相互作用的标准模型依赖于一套粒子体系,有的为人们熟悉的,有的则不熟悉。在第三季度还在准备粉碎质子的瑞士日内瓦附近的欧洲核子研究中心的大型强子对撞机(LHC),是寻找标准模型预言的希格斯玻色子——质量的赋予者——唯一的权威。

And much more besides. The standard model leaves many questions unanswered. Why does matter dominate antimatter in our cosmos? What is the true nature of gravity? What is the "dark matter" that appears to hold galaxies together made of? Attempts to answer such questions lead physicists time and time again to the same expedient: invent a new particle.

但还有许多标准模型留下的悬而未决的问题。为什么我们宇宙中的物质远超过反物质?什么是引力的本质?什么是把星系拉在一起的“暗物质”?试图回答这样的问题导致物理学家一次又一次采用相似的权宜之计:发明一种新的粒子。

What is dark matter? Or gravity? Why is the universe so smooth? There's a particle for every conundrum

什么是暗物质?什么是引力?为什么宇宙如此平滑?每一个难题就会有一个新的粒子

WHEN, in the late 1930s, the Nobel laureate Isidor Rabi learned of the discovery of a heavier version of the electron, he asked "Who ordered that?". Three-quarters of a century on, he could repeat that question many times over. We now know that Rabi's intruder, the muon, is one of a family of three electron-like particles that differ only in their mass.

在20世纪30年代后期,诺贝尔物理学奖获得者Isidor Rabi了解到较重版本的电子的发现,他问:“是谁订的?”。四分之三个世纪以来,同样的问题可以问很多次。我们现在知道,Rabi的不速之客,μ轻子,是类似电子的粒子家族的三者之一,区别仅在于它们的质量。

It doesn't end there. What is called the standard model of matter and its interactions relies on a panoply of particles, some familiar, some less familiar (see diagram). The Large Hadron Collider (LHC), which this month is preparing to smash protons together at CERN near Geneva, Switzerland, for its third full season, is looking for the definitive trace of the only particle predicted by the standard model still to be discovered - the Higgs boson, giver of mass.

这还没有结束。物质及其相互作用的标准模型依赖于一套粒子体系,有的为人们熟悉的,有的则不熟悉。在第三季度还在准备粉碎质子的瑞士日内瓦附近的欧洲核子研究中心的大型强子对撞机(LHC),是寻找标准模型预言的希格斯玻色子——质量的赋予者——唯一的权威。

And much more besides. The standard model leaves many questions unanswered. Why does matter dominate antimatter in our cosmos? What is the true nature of gravity? What is the "dark matter" that appears to hold galaxies together made of? Attempts to answer such questions lead physicists time and time again to the same expedient: invent a new particle.

但还有许多标准模型留下的悬而未决的问题。为什么我们宇宙中的物质远超过反物质?什么是引力的本质?什么是把星系拉在一起的“暗物质”?试图回答这样的问题导致物理学家一次又一次采用相似的权宜之计:发明一种新的粒子。
String theory is a popular shot at bringing together two disparate scales - the tiny world of quantum particles, where the standard model holds sway, and the cosmic distances over which gravity acts. It holds that particles such electrons and quarks are really strings of energy a mere 10-35 metres long vibrating in different ways.

弦理论是一种流行的两个不同的尺度的交汇——极小的量子世界,由标准模型支配着;和宇宙学的距离,由引力主导。它认为,粒子如电子和夸克其实是只有10^-35米长的弦的振动的不同方式。

If such predictions are at all correct, some interesting things might turn up at the LHC. Miniature black holes are one notorious possibility. Stringballs are another. These are made when two strings slam into one another and, rather than combining to form a stretched string, make a tangled ball.

如果这种预测是正确的,一些有趣的事情可能会在大型强子对撞机发生。微型黑洞是一个臭名昭著的可能。Stringballs则是另一个,两个弦猛撞时,不是结合成一个被拉长的弦,而是形成一个纠缠的球。

Energy is in plentiful supply at the LHC, so stringballs could show up there in large quantities. That would be a revolutionary event, says Savas Dimopoulos of Stanford University in California, one of the originators of the stringball concept. That's not least because string theory goes hand-in-hand with the idea that there are extra dimensions of space in addition to the three we know about. "Finding an extra dimension would be more exciting than discovering a new continent," says Dimopoulos.

能量足够高,所以在大型强子对撞机弦球可以大量产生。“这将是一个革命性的事件”,加州斯坦福大学的Savas Dimopoulos说,他是弦球概念的创始人之一。这个原因不是最少的,因为弦论始终伴随着有空间的额外维度的想法。 “发现一个额外的维度的令人兴奋的程度将超过发现新大陆”,Dimopoulos说。

So far, none has made its presence felt. But it is still early days for the particle smasher. "Theorists are good at predicting phenomena," shrugs Dimopoulos. "They just can't tell you where."

到目前为止,还没有发现它的存在。但目前仍然是加速器运行的初期阶段。“理论物理学家善于预测现象”,Dimopoulos耸耸肩,“他们只是不能告诉你在哪里。”


Sometimes, experiments lead the way in suggesting new particles. A decade ago, particle physics was abuzz when more than 10 experiments worldwidereported hints of a "pentaquark" - an agglomeration of four quarks and one antiquark that weighed half as much again as a proton.

有时实验会给出新粒子。十年前,世界范围内超过10个的实验揭示了“五夸克态”——凝聚了四个夸克和一个反夸克的束缚态,比质子多出一半的质量,这引发了粒子物理学家极大的兴趣。

Protons and other composite particles known in the standard model are either made from three quarks bound together, or are a ménage à deux of a quark and an antimatter antiquark. Yet there is no fundamental reason to believe weightier particles with combinations of four, five, six or even seven quarks and antiquarks don't exist, says particle theorist Frank Close of the University of Oxford. There are, however, very good reasons to believe we would be hard-pressed to spot them. A pentaquark, for example, would be expected to decay within less than 10-23 seconds - "about the time it takes for 0light to cross a particle", says Close.

标准模型中的质子和其他复合粒子要么是三个夸克结合在一起的,要么是一个夸克和一个反夸克结合在一起的。但是没有根本上的理由说重粒子态如四、五、六、七夸克和反夸克的组合不存在,牛津大学的粒子理论家Frank Close说。然而,有很好的理由相信我们会很难发现它们。例如一个五夸克态,预计将在小于10^-23秒内衰减——“所用的时间相当于光飞过一个粒子的尺寸”,Close说。

Our glimpse of pentaquarks certainly proved suitably fleeting. The presumed discoveries melted away in 2005 when a dedicated search for the particlesturned up nothing.

当时我们看到的五夸克态,最终被证明没有站得住脚。如果确实有这样的发现,2005年的一个专门设计的寻找实验应该能看到,但是结果并没有看到。

Yet even as pentaquarks have faded, there has been an uptick in sightings of "tetraquarks". These composite particles of two quarks and two antiquarks might be produced when an electron and its antiparticle, the positron, annihilate. The problem here, says Close, is one of interpretation: are we actually seeing true closely bound particles, or something more like "molecules" of two conventional quark-antiquark pairings loosely, and fleetingly, linked together?

然而即使五夸克态已经消失,现在又出现了四夸克态。这种两个夸克和两个反夸克的复合粒子可能会在电子和它的反粒子正电子湮灭时产生。问题就在于解释,Close说,我们实际看到的是真正的复合粒子,还是如同“分子”的两个传统的夸克反夸克对的松散的,飞离着的连在一起的对?

Such tales of particles found and lost gain resonance as we sieve through the LHC's outpourings. Is that really the Higgs boson, or a sign of supersymmetry - or will it too dissolve into thin air?

这样的发现而后又否定发现的情况将很可能在大型强子对撞机的运行中不断被反复。是真正的希格斯玻色子,或者超对称的信号,还是它最终将消失在空气中呢?

这个已于2013年发现,详见
http://lt.cjdby.net/thread-1680057-1-1.html
——译者注

Sometimes, experiments lead the way in suggesting new particles. A decade ago, particle physics was abuzz when more than 10 experiments worldwidereported hints of a "pentaquark" - an agglomeration of four quarks and one antiquark that weighed half as much again as a proton.

有时实验会给出新粒子。十年前,世界范围内超过10个的实验揭示了“五夸克态”——凝聚了四个夸克和一个反夸克的束缚态,比质子多出一半的质量,这引发了粒子物理学家极大的兴趣。

Protons and other composite particles known in the standard model are either made from three quarks bound together, or are a ménage à deux of a quark and an antimatter antiquark. Yet there is no fundamental reason to believe weightier particles with combinations of four, five, six or even seven quarks and antiquarks don't exist, says particle theorist Frank Close of the University of Oxford. There are, however, very good reasons to believe we would be hard-pressed to spot them. A pentaquark, for example, would be expected to decay within less than 10-23 seconds - "about the time it takes for 0light to cross a particle", says Close.

标准模型中的质子和其他复合粒子要么是三个夸克结合在一起的,要么是一个夸克和一个反夸克结合在一起的。但是没有根本上的理由说重粒子态如四、五、六、七夸克和反夸克的组合不存在,牛津大学的粒子理论家Frank Close说。然而,有很好的理由相信我们会很难发现它们。例如一个五夸克态,预计将在小于10^-23秒内衰减——“所用的时间相当于光飞过一个粒子的尺寸”,Close说。

Our glimpse of pentaquarks certainly proved suitably fleeting. The presumed discoveries melted away in 2005 when a dedicated search for the particlesturned up nothing.

当时我们看到的五夸克态,最终被证明没有站得住脚。如果确实有这样的发现,2005年的一个专门设计的寻找实验应该能看到,但是结果并没有看到。

Yet even as pentaquarks have faded, there has been an uptick in sightings of "tetraquarks". These composite particles of two quarks and two antiquarks might be produced when an electron and its antiparticle, the positron, annihilate. The problem here, says Close, is one of interpretation: are we actually seeing true closely bound particles, or something more like "molecules" of two conventional quark-antiquark pairings loosely, and fleetingly, linked together?

然而即使五夸克态已经消失,现在又出现了四夸克态。这种两个夸克和两个反夸克的复合粒子可能会在电子和它的反粒子正电子湮灭时产生。问题就在于解释,Close说,我们实际看到的是真正的复合粒子,还是如同“分子”的两个传统的夸克反夸克对的松散的,飞离着的连在一起的对?

Such tales of particles found and lost gain resonance as we sieve through the LHC's outpourings. Is that really the Higgs boson, or a sign of supersymmetry - or will it too dissolve into thin air?

这样的发现而后又否定发现的情况将很可能在大型强子对撞机的运行中不断被反复。是真正的希格斯玻色子,或者超对称的信号,还是它最终将消失在空气中呢?

这个已于2013年发现,详见
http://lt.cjdby.net/thread-1680057-1-1.html
——译者注


The proton's inner life is a complex affair. The three "valence" quarks that make up its charge live in a seething sea of shorter-lived quarks that pop into and out of existence from the quantum vacuum.

质子内部是一个复杂的世界。三个给出质子电荷的“价”夸克生活在一个沸腾的海洋中,旁边充斥着在量子真空中产生而又消失的寿命极端的夸克。

Pulling the strings is a melange of particles called gluons. Quarks carry both electrical charge and a property known as colour charge. Just as photons are exchanged between particles with electric charge to produce the electromagnetic force, gluons are exchanged between colour-charged quarks. This exchange produces the strong nuclear force that binds them together.

把它们束缚在一起的拉弦的则是一类称为胶子的粒子。夸克携带电荷和另一种称为色荷的属性。正如带电粒子交换光子产生了电磁力一样,胶子在带色的夸克之间交换。这种交换产生强大的核力,把它们结合在一起。

Except there is a difference. Photons are electrically neutral, but gluons themselves carry colour charge, and so feel their own force. That raises an interesting question: can we forget the quarks altogether, and make matter just of gluons stuck to each other?

但是还是有差别的。光子是电中性的,但胶子本身也带有色荷,所以它们有自己的相互作用力。这就产生了一个有趣的问题:能不能完全不要夸克,使物质仅仅只是相互粘接的胶子?

The possibility of "glueballs" has tantalised physicists for three decades. In 1994, CERN's Crystal Barrel experiment provided the first of a series of putative sightings. Yet two decades on, says particle theorist Frank Close, we are no closer to saying what truth there was in the claims. Any number of electrically neutral, strongly-interacting particles will in all practically conceivable situations mix with glueballs and muddy the waters. "There is nothing that goes against the idea of glueballs existing," says Close. "But how to prove it is still bugging me."

“胶球”的可能性已经引诱了物理学家三十年。 1994年,欧洲核子研究中心的水晶桶实验提供了一系列中的第一个候选发现。然而二十年来,粒子理论家的Close说,我们并没有更接近说什么是正确的。任意数量的电中性的强相互作用粒子,在几乎可以想象的任何实际情况下,和胶球的信号混杂而会把水搅浑。 “没有什么违背现有的胶球理论”,CLose说,“但是如何证明它仍困扰着我。”


The proton's inner life is a complex affair. The three "valence" quarks that make up its charge live in a seething sea of shorter-lived quarks that pop into and out of existence from the quantum vacuum.

质子内部是一个复杂的世界。三个给出质子电荷的“价”夸克生活在一个沸腾的海洋中,旁边充斥着在量子真空中产生而又消失的寿命极端的夸克。

Pulling the strings is a melange of particles called gluons. Quarks carry both electrical charge and a property known as colour charge. Just as photons are exchanged between particles with electric charge to produce the electromagnetic force, gluons are exchanged between colour-charged quarks. This exchange produces the strong nuclear force that binds them together.

把它们束缚在一起的拉弦的则是一类称为胶子的粒子。夸克携带电荷和另一种称为色荷的属性。正如带电粒子交换光子产生了电磁力一样,胶子在带色的夸克之间交换。这种交换产生强大的核力,把它们结合在一起。

Except there is a difference. Photons are electrically neutral, but gluons themselves carry colour charge, and so feel their own force. That raises an interesting question: can we forget the quarks altogether, and make matter just of gluons stuck to each other?

但是还是有差别的。光子是电中性的,但胶子本身也带有色荷,所以它们有自己的相互作用力。这就产生了一个有趣的问题:能不能完全不要夸克,使物质仅仅只是相互粘接的胶子?

The possibility of "glueballs" has tantalised physicists for three decades. In 1994, CERN's Crystal Barrel experiment provided the first of a series of putative sightings. Yet two decades on, says particle theorist Frank Close, we are no closer to saying what truth there was in the claims. Any number of electrically neutral, strongly-interacting particles will in all practically conceivable situations mix with glueballs and muddy the waters. "There is nothing that goes against the idea of glueballs existing," says Close. "But how to prove it is still bugging me."

“胶球”的可能性已经引诱了物理学家三十年。 1994年,欧洲核子研究中心的水晶桶实验提供了一系列中的第一个候选发现。然而二十年来,粒子理论家的Close说,我们并没有更接近说什么是正确的。任意数量的电中性的强相互作用粒子,在几乎可以想象的任何实际情况下,和胶球的信号混杂而会把水搅浑。 “没有什么违背现有的胶球理论”,CLose说,“但是如何证明它仍困扰着我。”
Why is space so smooth and the contents of the cosmos so evenly distributed? According to the plain-vanilla big bang model of the universe's origins, space could be jaggedy or warped in all manner of curious ways.

为什么空间如此平滑,宇宙的物质分布如此均匀?根据最少假设的宇宙起源的大爆炸模型,空间可能取各种参差不齐的或让人惊奇的扭曲的方式。

The current standard explanation is that just after its birth the universe went through a period of breakneck expansion in which regions of space were pulled apart faster than the speed of light, ironing out all the wrinkles. The driving force behind this "inflation" was a hugely energetic field that briefly dominated the cosmos before dissolving into other matter and radiation.

目前的标准解释是,刚出生后的宇宙经历了一段时间的急速扩张,空间区域被拉开的速度超过光的速度,因而消除了所有的皱纹。 “暴胀”背后的驱动力是一个巨大的能量场,短暂地主导了宇宙,然后衰变成其他物质和辐射。

Quantum theory says that every field has an associated particle - in this case the inflaton. Its existence would have some intriguing implications. Quantum fluctuations in the inflaton field make it very difficult to turn off completely, so parts of the original cosmos will still be inflating, making for a "multiverse" of independently developing universes.

量子理论认为,每一个场都有一个关联的粒子——暴胀亦然。它的存在有一些有趣的影响。暴胀场的量子涨落很难完全消除,所以原来宇宙的某些部分仍然会暴胀,产生自主演化的“多元宇宙”。

Direct evidence for the inflaton won't be coming any time soon, though. At a minimum, you would require an accelerator capable of producing a trillion times the LHC's energy density, says Paul Steinhardt of Princeton University. "But then you have to figure out what to accelerate such that, when it collides, it would produce inflatons."

虽然暴胀子的直接证据将不会很快出现,因为至少,你将需要一个能产生大型强子对撞机能量密度万亿倍的加速器,普林斯顿大学的Paul Steinhardt说。 “但你必须弄清楚什么加速碰撞时,会产生暴胀子”。
Even if we never succeed in isolating a glueball (see left), there's one place physicists are convinced they will turn up - at the LHC, as packets of energy exchanged when protons suffer only a glancing collision in the accelerator.

即使我们最终也不能分离出一个胶球(见上文),至少有一个地方物理学家会相信它会出现——在大型强子对撞机,如果质子只受到一个擦肩而过(而不是迎头——译者注)的碰撞的能量交换的话。

These "virtual" glueballs come in all shapes and sizes depending on the nature of the collision, creating a mathematical headache for theorists. But there is a ready remedy, says theorist Joe Polchinski at the University of California, Santa Barbara: simplify them all into an "effective" particle known as a pomeron.

这些虚的胶球的形状和大小取决于碰撞的本质,这着实是个让理论物理学家个头疼的数学问题。但有一个现成的补救措施,美国加州大学圣巴巴拉分校的理论物理学家Joe Polchinski说:整个简化成一个等效的称为pomeron的粒子。

Pomerons have a long history in models of proton interactions, pre-dating theories involving quarks, gluons and the strong force. They were even one of the inspirations for string theory (see "Stringballs"), which originally aimed to explain protons before it was radically repurposed. "String theory was supposed to be a theory of the strong interactions," says Polchinski. "Instead it turned out to be a theory of gravity."

Pomerons在质子相互作用的模型中有一个很长的历史,甚至在夸克、胶子和强相互作用力的引入之前就有。他们甚至是弦理论的源头之一(请参阅“Stringballs”),最初的目的是解释质子,然后才从根本上改变用途。“弦理论起初被建议为是强相互作用的理论”,Polchinski说, “然后才转变成一个引力理论。”

Now things are moving back the other way. String theory with an extra fifth dimension turns out to look very much like the strong force in our conventional four dimensions - so it can now be used to understand pomerons and the goings-on in glancing reactions at the LHC.

现在,事情正在朝相反的方向发展。一个有额外的第五个维度的弦理论看起来非常像我们传统的四维中的强相互作用力——所以它现在被用来理解pomerons以及在大型强子对撞机中的擦肩而过的反应。

That could help hook the big fish: such brushing encounters produce much less debris than a standard head-on LHC collision. Detectors are under development that can spot protons that have swapped pomerons, and they could provide a particularly clear sight of the vaunted Higgs boson, says theorist Jeff Forshaw at the University of Manchester in the UK.

这可能真的会放长线钓大鱼:这样的擦肩而过的碰撞比一个标准的大型强子对撞机中的迎头碰撞产生少得多的碎片。探测器正在改进以发现质子交换pomerons的信号,这样的改进有助于更清楚的看到人们更为关注的希格斯玻色子,英国曼彻斯特大学的理论物理学家Jeff Forshaw说。
In 1994, a team of physicists were colliding electrons head-on with protons at the DESY laboratory in Hamburg, Germany, when they saw an electron apparently turn into its heavier counterpart, a muon. Such a transformation is unheard of in the standard model. So what happened?

1994年,一组物理学家在德国汉堡的DESY实验室做电子迎头碰质子的实验。他们显然看到了一个电子变成了其较重的对应物,一个μ轻子。在标准模型中,这样的转变是前所未闻的。发生了什么?

One possibility is that the collisions created a heavyweight crossbreed known as a leptoquark. In the standard model, electrons and protons are very different sorts of particles, set apart by the forces they feel. Protons and the like are composites made when quarks combine under the influence of the strong force (see "Tetraquark"). Particles such as electrons and muons are elementary particles, collectively known as leptons, that do not feel the strong force at all.

一种可能性是,碰撞产生了一个重量级的称为轻子夸克的杂交。在标准模型中,电子和质子是种类截然不同的粒子,由它们感受到的相互作用将它们分开。质子和类似的粒子是夸克在强相互作用力的作用下复合而成的(请参阅“四夸克”)。如电子和μ轻子的粒子是基本粒子,统称为轻子,并不感受强相互作用力。

Grand unified theories aim to cut across such boundaries by rolling three of the four forces of nature into one. In some theories, when an electron hits a proton, as at DESY's HERA accelerator, leptoquarks can form and decay to a muon and a quark. "HERA seemed like a good place to make a leptoquark," says John Ellis, a theoretical physicist at King's College London.

大统一理论的目标是跨越这些界限,使自然界四种基本相互作用的三种融合为一种。在一些理论,当电子撞击一个质子时,例如在DESY的HERA加速器中,可以形成轻子夸克并衰减到一个μ轻子和夸克。“HERA似乎是一个产生轻子夸克的好地方”,伦敦大学国王学院的理论物理学家John Ellis说。

In the event, there were no further sightings, and the excitement faded. Yet the lure of grand unified theories remains - and the search for leptoquarks continues at the LHC today.

在这个事件中,进一步的观测事例的缺乏使大家的兴奋度下降。然而,大统一理论的诱惑一直存在——在大型强子对撞机上轻子夸克的寻找今天仍在继续。


Particle physicists are generally a sober bunch. The same is not always true of their particles.

粒子物理学家通常是清醒的一群。他们的粒子则不总是如此。

Winos pop up in supersymmetry, the grand theoretical construction that is favoured to subsume the standard model. Supersymmetry patches some of the standard model's structural weaknesses by suggesting that each known particle has an as-yet-undiscovered, generally heavier partner.

W微子出现在超对称理论中,这个宏大的理论建设希望标准模型成为其自然的一部分。超对称补救了一些标准模型的结构上的弱点,它认为每个已知粒子都有一个尚未发现的,普遍较重的伙伴粒子。

Fermions, for example, are a class of standard-model particle that embrace the building blocks of matter - electrons and quarks - and their ghostly neutrino relatives (see diagram). In supersymmetry, they all have "sfermion" cousins: selectrons, sneutrinos and the parrot-like squarks. The other main group of standard-model particles, the force-transmitting bosons, have "-ino" partners: photinos for photons, gluinos for gluons, and so on. Hence the Winos: they are partners of the W bosons, particles that transmit the weak nuclear force.

例如,费米子——电子和夸克——还有它们幽灵般的亲戚中微子,是一类作为物质构成的积木的标准模型粒子。在超对称中,它们都具有表兄弟“(英语前加s-的)超费米子sfermion”:超电子selectrons,超中微子sneutrinos和鹦鹉一样的超夸克squarks。其他主要的标准模型的粒子,传递相互作用力的玻色子,有命名方式为“(英语后加-ino的)微子”的伙伴:光微子photinos,胶微子gluinos,等等。因此W微子是W玻色子的超对称伙伴,W玻色子自身则是传递弱相互作用力的粒子。

According to supersymmetry, all sfermions are bosons and all "bosinos" are fermions. If this all sounds rather confusing, don't worry: the LHC has yet to turn up the expected haul of supersymmetric particles. For many particle physicists and cosmologists a lack of Winos and the like would be a serious headache, as supersymmetric particles provide a ready recipe for the obscure dark matter that binds galaxies together (see "Wimpzilla").

根据超对称,所有的超费米子是玻色子,而所有“玻色微子”是费米子。如果这一切听起来相当混乱,不用担心:大型强子对撞机目前还没有发现这些超对称粒子。对于许多粒子物理学家和宇宙学家来说,缺乏W微子和类似的粒子将是一个严重的问题,因为超对称粒子对把星系结合在一起的暗物质(请参阅“Wimpzilla”)提供了一个现成的配方。

Particle physicists are generally a sober bunch. The same is not always true of their particles.

粒子物理学家通常是清醒的一群。他们的粒子则不总是如此。

Winos pop up in supersymmetry, the grand theoretical construction that is favoured to subsume the standard model. Supersymmetry patches some of the standard model's structural weaknesses by suggesting that each known particle has an as-yet-undiscovered, generally heavier partner.

W微子出现在超对称理论中,这个宏大的理论建设希望标准模型成为其自然的一部分。超对称补救了一些标准模型的结构上的弱点,它认为每个已知粒子都有一个尚未发现的,普遍较重的伙伴粒子。

Fermions, for example, are a class of standard-model particle that embrace the building blocks of matter - electrons and quarks - and their ghostly neutrino relatives (see diagram). In supersymmetry, they all have "sfermion" cousins: selectrons, sneutrinos and the parrot-like squarks. The other main group of standard-model particles, the force-transmitting bosons, have "-ino" partners: photinos for photons, gluinos for gluons, and so on. Hence the Winos: they are partners of the W bosons, particles that transmit the weak nuclear force.

例如,费米子——电子和夸克——还有它们幽灵般的亲戚中微子,是一类作为物质构成的积木的标准模型粒子。在超对称中,它们都具有表兄弟“(英语前加s-的)超费米子sfermion”:超电子selectrons,超中微子sneutrinos和鹦鹉一样的超夸克squarks。其他主要的标准模型的粒子,传递相互作用力的玻色子,有命名方式为“(英语后加-ino的)微子”的伙伴:光微子photinos,胶微子gluinos,等等。因此W微子是W玻色子的超对称伙伴,W玻色子自身则是传递弱相互作用力的粒子。

According to supersymmetry, all sfermions are bosons and all "bosinos" are fermions. If this all sounds rather confusing, don't worry: the LHC has yet to turn up the expected haul of supersymmetric particles. For many particle physicists and cosmologists a lack of Winos and the like would be a serious headache, as supersymmetric particles provide a ready recipe for the obscure dark matter that binds galaxies together (see "Wimpzilla").

根据超对称,所有的超费米子是玻色子,而所有“玻色微子”是费米子。如果这一切听起来相当混乱,不用担心:大型强子对撞机目前还没有发现这些超对称粒子。对于许多粒子物理学家和宇宙学家来说,缺乏W微子和类似的粒子将是一个严重的问题,因为超对称粒子对把星系结合在一起的暗物质(请参阅“Wimpzilla”)提供了一个现成的配方。
Forget the rules: with anyons, anything goes. These denizens of two-dimensional worlds do not obey the normal, clean division of particles into fermions and bosons (see "Winos"), but lie somewhere between the two - an ambiguous status that led Nobel prizewinning particle theorist Frank Wilczekof the Massachusetts Institute of Technology to give them their name.

忘记规则:对于任意子,任何事情都会发生。这些二维世界的居民们不服从正常的,清晰的费米子和玻色子的划分(请参阅“Winos”),而是介于两者之间——这种模棱两可的状态导致麻省理工学院的诺贝尔奖获得者理论粒子物理学家Frank Wilczek给它们取了这个名字。

Conventional particles such electrons and photons can be regarded as aberrations in the energy of free space, as point-like "excitations" of the quantum vacuum. Similarly, anyons crop up as energetic excitations, each apparently carrying just a fraction of an electron's charge, in two-dimensional layers of some metals when exposed to a strong magnetic field.

像电子和光子这样的常规粒子可以被视为自由空间中的畸变,作为量子真空的点状“激发”。同样,任意子也是一些能量激发,每一个只是携带电子电荷的一部分,出现于处在强磁场中的一些金属的二维层里。

In such a situation, the moving parts are actually the photons of the magnetic fields and the free electrons of the metal. So why invent a new particle? For the same reason we invent things like protons, says Wilczek: they work. Protons are made up of quarks, but no one has ever seen a quark on its own, so it often makes sense, for example when describing how atomic nuclei work, to deal in protons. "In principle you could do without identifying the excitations as separate entities," says Wilczek. "But it would be awkward and perverse."

在这样的情况下,移动的部分实际上是磁场的光子和金属的自由电子。那么为什么要发明一种新的粒子?像我们发明质子一样,出于同样的原因,Wilczek说:它们管用。质子是由夸克组成的,但没有人见过单独的夸克,因此作为质子来处理往往是有道理的,例如当描述原子核的行为时。 “原则上你可以不必假定这些激发作为独立的实体”,Wilczek说。 “但是那会很不方便的。”

The advent of 2D materials such as graphene - the single layers of carbon atoms that earned Andre Geim and Konstantin Novoselov the Nobel prize in physics in 2010 - means anyons could soon be anyone's. Their unique characteristics also make them hot favourites to power a future generation of superfast quantum computers.

如二维材料石墨烯——单个层的碳原子,使得Andre Geim和Konstantin Novoselov获得2010年诺贝尔物理学奖的发现——的出现,意味着任意子可能很快就会走进任何一个人。其独特的性质也使它们成为下一代的超高速量子计算机的大热门。
The discovery that the universe's expansion is accelerating came from observations of far-off supernovae in the 1990s, and was deemed worthy of the latest Nobel prize in physics.

20世纪90年代对于遥远的超新星的观测,发现了宇宙正在加速膨胀,被公认为使得2011年度诺贝尔物理学奖物有所值。

It has left theorists scratching their heads as to what causes it. The leading candidate is a "dark energy" that emanates from the quantum vacuum, and somehow manages to trump the steadying force of gravity. Other suggestions are that the effect is an illusion born of where we are sitting in the cosmos - or simply that gravity itself is weakened on large cosmic scales.

它却使得有的理论物理学家摸不着头脑,是什么原因造成宇宙加速膨胀的。主流的候选者是“暗能量”,源自量子真空,用某种方法胜过了把万物拉在一起的起稳定作用的引力。另外的建议则是,这个效果就类似于过去的我们就处在宇宙中心的地心说的错觉——或者简单的在宇宙学的大尺度上,引力的作用被削弱。

This last explanation has a big hurdle to overcome. Our current theory of gravity, Einstein's general theory of relativity, says that the force works in the same way everywhere. Its predictions have been confirmed on scales up to that of the solar system, which is as far as we have roamed to test it.

后一个解释有一个很大的障碍需要克服。我们目前的引力理论,爱因斯坦的广义相对论说,引力在宇宙各处有同样的行为。它的预言已经得到太阳系尺度上的验证,至少我们星际探测器的漫游就证实了这一点。

Galileons provide a neat workaround. They are the quantum particles associated with a field that is hypothesised to weaken gravity. Like the related "chameleon" particles, their influence is screened by the presence of matter. In a region of relatively high density, such as our solar system, their weakening effect is imperceptible, kicking in only over vast, emptier swathes of the cosmos - thus explaining the supernova observations.

伽利略子提供一个简洁的解决方法。它们是与一个假设的能够削弱引力的场相联系的粒子。像相关的“变色龙”粒子一样,它们的作用被物质所屏蔽。在相对高密度的区域,如我们的太阳系,他们的削弱作用是不能被观测的,只有在巨大而空虚的大片的宇宙中才有效——从而解释了超新星的观测。

It's a nice idea, but is it true? The answer depends on finding testable effects that we might use to prove the existence of the particles, says theorist Mark Trodden of the University of Pennsylvania in Philadelphia. "We are trying very hard to work out what they might be."

这是一个不错的主意,但它是对的吗?问题的答案取决于找到能够测试的效果,让我们能够证实它的存在,费城宾夕法尼亚大学的理论物理学家Mark Trodden说。“我们非常努力的研究它们可能是什么。”
When Italian theoretical physicist Ettore Majorana disappeared en route from Palermo to Naples in 1938, he left behind many riddles. Among them was under what circumstances a particle can be its own antiparticle.

当意大利的理论物理学家Ettore Majorana在1938年消失在从巴勒莫到那不勒斯的途中时,他留下了许多不解之谜。其中一个是在什么情况下,一个粒子可以是它自己的反粒子。

Particles and antiparticles are identical except for their opposite electrical charges. Unlike the partner particles of supersymmetry (see "Winos"), antimatter is real - although it only emerged from the realms of conjecture in 1932, when a positively charged anti-electron, or positron, was seen in cosmic rays.

粒子和它的反粒子是相同的,除了它们的电荷相反以外。与超对称建议的超伙伴粒子(请参阅“Winos”)不同,反物质是真实的——虽然它最初时只是出现于1932年该领域的猜想中,在被视为一个带正电的反电子或正电子在宇宙射线中被看到的时候。

Majorana suggested that a chargeless particle belonging to the same group as the electron, the fermions, might have an antiparticle with identical, zero charge. That seems absurd: surely that would just be the same particle twice over? But Majorana's particles are a fixture in a supersymmetric world. There, the chargeless photon has a fermionic superpartner, the photino, which is its own antiparticle. The same goes for the Higgsino, the superpartner of the Higgs boson.

Majorana建议,一个不带荷的和电子同属费米子的粒子,可能有一个相同的零电荷的反粒子。这似乎是荒谬的:这不就是同一个粒子的两次反复吗?但Majorana粒子本来在超对称世界是肯定有的。没有荷的光子的费米的超对称伙伴,光微子,是它自身的反粒子。同样的是希格斯微子,希格斯玻色子的超对称伙伴。

Something answering Majorana's description also popped up in a lab-bound nanoscale semiconducting wire just last month, confirming a long-standing theoretical prediction. They are quite possibly also passing through our heads every second: neutrinos and antineutrinos seem to interact differently, but might be the same chargeless particle in different states of motion.

同样回答了Majorana描述的实验也出现在上个月,在用纳米半导体导线做实验的实验室里,证实了长期以来的理论预测。它们很可能就在每秒不停的穿过我们的脑袋:中微子和反中微子的反应方式不同,但可能是相同的无荷粒子的不同的运动状态。

The experimental proof might be spotting a nuclear process called neutrinoless double beta decay. Conventional beta decay comes with the emission of an antineutrino or neutrino. In rare cases where a nucleus can undergo two such decays, two of those particles should be emitted. If the neutrino were its own antiparticle, the two would annihilate, and no neutrino emission would be observed. Such processes might in turn shed light on one of the biggest riddles of them all: why it is that matter, rather than antimatter, came to dominate the cosmos.

实验上的证明应该是一个被称为无中微子双β衰变的核过程。传统的β衰变伴随着反中微子或中微子的释放。在罕见的情况下,一个核可以进行两次这样的衰变,放出两个这样的粒子。如果中微子是其自己的反粒子,两者便湮灭,观测不到释放的中微子。这样的过程有助于揭开它们最大的谜团:为什么是物质,而不是反物质,主导了整个宇宙。
Physicist Rocky Kolb was doing his grocery shopping in Warrenville, Illinois, one day, and wondering what he should call the dark-matter particle he and his colleagues had just invented. A movie poster on a passing bus provided the answer. It was 1998 and the Godzilla remake had just been released. The wimpzilla was born.

物理学家Rocky Kolb在伊利诺斯州的Warrenville的超市购物,他在想给他和他的同事们刚刚发明的暗物质粒子模型取个名字。旁边路过的公交车上的一部电影的海报提供了答案。这是1998年,哥斯拉(Godzilla)翻拍刚刚上映。于是诞生了Wimpzilla。

No one knows what dark matter is made of: we just know that 80 per cent of universe's matter is invisible to our telescopes. Weakly-interacting massive particles, or WIMPs, are a popular idea. Between 10 and 100 times as weighty as protons, they would have been produced in the universe's hot primordial soup and corralled by gravity to seed today's galaxies.

没有人知道暗物质是什么:我们只知道在我们的望远镜里,80%以上的宇宙物质是不可见的。弱相互作用重粒子,Weakly-interacting massive particles或WIMP,是一个流行的想法。它们比质子重10倍到100倍,会在宇宙原始热遗迹中产生,并通过引力播下今天的星系结构的种子。

But that is not the only possibility. Within the universe's first second, during the period of inflation (see "Inflatons"), the expansion of space itself ripped particles out of the vacuum. Kolb and his colleagues calculated that among them could have been dark particles weighing a billion times more than a WIMP.

但这并不是唯一的可能性。在宇宙的第一秒的暴胀时期(请参阅“暴胀子”),空间本身的膨胀从真空中撕出了粒子。Kolb和他的同事们计算,其中暗粒子的质量可以比WIMP大十亿倍。

Their monstrous mass means wimpzillas would be exceedingly rare. They can't be made in particle accelerators and are unlikely to amble into one of the myriad underground detectors looking for WIMPs. "They are possibly the most elusive dark-matter particles ever proposed," concedes Kolb.

巨兽级的质量意味着Wimpzillas将是极为稀少的。他们不能在粒子加速器中产生,恐怕也不能被众多的探测WIMP的地下探测器所捕获。“他们可能是曾经提出的最难以捉摸的暗物质粒子,”Kolb说。

They might still leave subtle features in the cosmic microwave background radiation, the big bang's afterglow that suffuses the sky. If we find any trace, for example in the detailed maps of the cosmic background expected from the European Space Agency's Planck satellite, "then after 10,000 years of thinking about it, we'll know what the universe is made of", says Kolb. Such are the grand prizes that can come from inventing new particles.

他们可能留下踪影的地方在宇宙微波背景辐射中,那是弥漫天空的宇宙大爆炸的余辉。如果我们发现任何痕迹,例如在来自欧洲航天局的普朗克卫星的宇宙背景辐射的详细测量中,“那么经过万年的思考,我们就可以知道宇宙是由什么构成的”,Kolb说。这是发明新粒子的概念可以得到的大奖。
看了半天,不确定知其然,更不知其所以然。{:soso__15501390449810790162_4:}
@QGP 兄弟看看Pomerons有没有比较好的翻译
huor 发表于 2013-1-5 14:10
@QGP 兄弟看看Pomerons有没有比较好的翻译
国内做这个的很少吧.所以最多就是直接音译了(朱守华好像上课的时候提过,就是直接音译的)


glueball就是指QCD把夸克全部除掉后剩下的所谓gluondynamics的粒子谱,只由胶子形成的色单态,最轻的大概是1-GeV左右(这个质量可能是用格点算出来的,具体的问刘川吧),可以有无穷多组合(纯粹的群论技术)在QCD的衍射散射中有人提出需要认为是交换有质量的粒子,glueball是候选.Close说的关于glueball和其他强子混合的问题的确是确认glueball的大麻烦.在实验上已经发现的低能强子谱中,标量粒子是最难以捉摸的,属以硬骨头类型的,争议也最大,很难说有公认的解释,其他的都还好.至于五夸克态,偶介子态或者现在说的较多的分子态其实不是什么新概念.提了很久了(可能当初不是这么叫的).像2003年以后发现的一系列"类粲强子"态就是这些旧概念新炒的试验动机.因为这些态不能放进传统的夸克模型中(就是教科书上说的那些),主要是质量阈值,宽度,分支比这些东东和理论计算不能完全合上.BESIII的一个动机就是研究这些新的谱(能量也就在4-5GeV),但需要高亮度,高分率找这些谱或者新的共振态.(你可以认为是强子化学)


glueball就是指QCD把夸克全部除掉后剩下的所谓gluondynamics的粒子谱,只由胶子形成的色单态,最轻的大概是1-GeV左右(这个质量可能是用格点算出来的,具体的问刘川吧),可以有无穷多组合(纯粹的群论技术)在QCD的衍射散射中有人提出需要认为是交换有质量的粒子,glueball是候选.Close说的关于glueball和其他强子混合的问题的确是确认glueball的大麻烦.在实验上已经发现的低能强子谱中,标量粒子是最难以捉摸的,属以硬骨头类型的,争议也最大,很难说有公认的解释,其他的都还好.至于五夸克态,偶介子态或者现在说的较多的分子态其实不是什么新概念.提了很久了(可能当初不是这么叫的).像2003年以后发现的一系列"类粲强子"态就是这些旧概念新炒的试验动机.因为这些态不能放进传统的夸克模型中(就是教科书上说的那些),主要是质量阈值,宽度,分支比这些东东和理论计算不能完全合上.BESIII的一个动机就是研究这些新的谱(能量也就在4-5GeV),但需要高亮度,高分率找这些谱或者新的共振态.(你可以认为是强子化学)

QGP 发表于 2013-1-5 22:51
glueball就是指QCD把夸克全部除掉后剩下的所谓gluondynamics的粒子谱,只由胶子形成的色单态,最轻的大概是1- ...
在为期五天的会议中,会议代表除了听取加速器运行现状、探测器硬件维护升级,BESIII软件改进,计算资源整合的相关内容外,还听取了大量的物理分析等方面的报告。2012年度,BESIII实验取得重要物理结果。如确定了质子-反质子反常阈值增强结构的自旋、宇称为0-+;首次发现很强的同位旋破坏过程,为理解长期以来公认的胶球候选者η(1440)的性质提供了重要的实验信息;首次观测到磁偶极跃迁过程ψ'→γηc';首次考虑了干涉效应,从而最精确地测量了ηc共振参数。从2012年1月至今,BESIII实验已在国际一流刊物上发表了18篇文章,另有10篇文章已投稿。同时,三十多个分析工作正在合作组内部评审之中。

  本次合作组会议还制定了新的取数计划。近年来美国SLAC的BaBar实验和日本KEK的Belle实验通过B介子衰变、双粲偶素粒子产生、双光子对撞过程以及初态辐射过程等方式,观测到一系列新粒子,如X、Y、Z粒子。有些X、Y、Z粒子很难用常规的强子态来解释。对这些粒子性质的理解及其产生和衰变性质的研究是目前国际高能物理研究的热点之一。因此,BESIII拟在下一个运行年在4.26GeV和4.36GeV处各获取500pb-1的数据,以研究X、Y和Z粒子。同时,BESIII还将进行3.8GeV以上的R值扫描,精确测量R值。
BESIII取得的这些成果咋没有报道啊,难道都不重要啊
QGP 发表于 2013-1-5 22:51
glueball就是指QCD把夸克全部除掉后剩下的所谓gluondynamics的粒子谱,只由胶子形成的色单态,最轻的大概是1- ...
在为期五天的会议中,会议代表除了听取加速器运行现状、探测器硬件维护升级,BESIII软件改进,计算资源整合的相关内容外,还听取了大量的物理分析等方面的报告。2012年度,BESIII实验取得重要物理结果。如确定了质子-反质子反常阈值增强结构的自旋、宇称为0-+;首次发现很强的同位旋破坏过程,为理解长期以来公认的胶球候选者η(1440)的性质提供了重要的实验信息;首次观测到磁偶极跃迁过程ψ'→γηc';首次考虑了干涉效应,从而最精确地测量了ηc共振参数。从2012年1月至今,BESIII实验已在国际一流刊物上发表了18篇文章,另有10篇文章已投稿。同时,三十多个分析工作正在合作组内部评审之中。

  本次合作组会议还制定了新的取数计划。近年来美国SLAC的BaBar实验和日本KEK的Belle实验通过B介子衰变、双粲偶素粒子产生、双光子对撞过程以及初态辐射过程等方式,观测到一系列新粒子,如X、Y、Z粒子。有些X、Y、Z粒子很难用常规的强子态来解释。对这些粒子性质的理解及其产生和衰变性质的研究是目前国际高能物理研究的热点之一。因此,BESIII拟在下一个运行年在4.26GeV和4.36GeV处各获取500pb-1的数据,以研究X、Y和Z粒子。同时,BESIII还将进行3.8GeV以上的R值扫描,精确测量R值。
BESIII取得的这些成果咋没有报道啊,难道都不重要啊
EKW 发表于 2013-1-10 11:16
在为期五天的会议中,会议代表除了听取加速器运行现状、探测器硬件维护升级,BESIII软件改进,计算资源整合 ...
你这不是报道了么?你要什么样的报道?上新闻头版?

QGP 发表于 2013-1-10 23:46
你这不是报道了么?你要什么样的报道?上新闻头版?


我的意思是如果是重大发现的话肯定是要上新闻头版的,如果没上新闻头版,只在中科院高能所的会议信息中出现,就不算是重大发现了吧
QGP 发表于 2013-1-10 23:46
你这不是报道了么?你要什么样的报道?上新闻头版?


我的意思是如果是重大发现的话肯定是要上新闻头版的,如果没上新闻头版,只在中科院高能所的会议信息中出现,就不算是重大发现了吧
QGP 发表于 2013-1-10 23:46
你这不是报道了么?你要什么样的报道?上新闻头版?
周一的时候我们这里的Joe Ronser讲到了一个potential model貌似可以解释多夸克态,可曾学过
huor 发表于 2013-1-11 11:30
周一的时候我们这里的Joe Ronser讲到了一个potential model貌似可以解释多夸克态,可曾学过
现在的问题是要找一个同时解释谱和各种衰变,跃迁的.而且不是一个,而是一堆共振态
pomeron - Isaak Pomeranchuk - 波梅子
odderon - odd+Pomeron - 奇嘚子
sanzoh 发表于 2013-1-17 16:55
pomeron - Isaak Pomeranchuk - 波梅子
odderon - odd+Pomeron - 奇嘚子
长见识了,以前真不知道这个pomer-的来历
恕我完全看不懂
sanzoh 发表于 2013-1-17 16:55
pomeron - Isaak Pomeranchuk - 波梅子
odderon - odd+Pomeron - 奇嘚子
这翻译好狗血
huor 发表于 2013-1-17 19:42
长见识了,以前真不知道这个pomer-的来历
pomeron应该是来自Regge theory,在QCD框架下解释pomeron一直是那波人的目标
QGP 发表于 2013-1-27 03:50
这翻译好狗血
我倒是觉得有可能
huor 发表于 2013-1-27 06:53
我倒是觉得有可能
就是音译词
QGP 发表于 2013-1-27 07:36
就是音译词
我说的是英文名的来历
对高歌教授的《蓝星科技梦想》怎么看?

对他说的介子对撞机怎么看?
qiugb 发表于 2014-8-1 09:58
对高歌教授的《蓝星科技梦想》怎么看?

对他说的介子对撞机怎么看?
蓝星科技梦想就是个纯幻想。里面幻想的冷沸材料,我费了很大劲才在百度百科的词条中改过来
他说的介子对撞机我从来没看到过。业界确实有不用质子或者电子的下一代对撞机构想,首选的是muon缪轻子,这个倒是往往会被误认为是介子。真正的介子比如带电的pion来做对撞机,好处上没有muon来得多,因为它是复合粒子需要考虑部分字分部函数,还没有质子来得好