德国核聚变新发展(7楼有更好的科普)

来源:百度文库 编辑:超级军网 时间:2024/05/04 23:57:08
<br /><br />由德国开发新的stellarator,比现时ITER建造的tokamak更有前途,美国也投入了。

Stellarator是tokamak的一种变种,靠修型来减低用磁场控制离子浆的难度。

文章中还有核聚变的基本原理,有兴趣可一看。

来自The Economists 2011年9月3日标题 Fusion Power Next ITERation?

Generating electricity by nuclear fusion has long looked like a chimera. A reactor being built in Germany may change that

AS THE old joke has it, fusion is the power of the future—and always will be. The sales pitch is irresistible: the principal fuel, a heavy isotope of hydrogen called deuterium, can be extracted from water. In effect, therefore, it is in limitless supply. Nor, unlike fusion’s cousin, nuclear fission, does the process produce much in the way of radioactive waste. It does not release carbon dioxide, either. Which all sounds too good to be true. And it is. For there is the little matter of building a reactor that can run for long enough to turn out a meaningful amount of electricity. Since the first attempt to do so, a machine called Zeta that was constructed in Britain in the 1950s, no one has even come close.

At the moment, the main bet being placed by fusion enthusiasts is on ITER, the International Thermonuclear Experimental Reactor, a research machine that can hold 840 cubic metres of hot, gaseous fuel. It is being bolted together at a projected cost of 15 billion ($22 billion) in the south of France. ITER is what is known as a tokamak, a doughnut-shaped device invented in Russia at about the same time Zeta was active. Deuterium (along with an even heavier hydrogen isotope called tritium, which is made by bombarding either deuterium or lithium with neutrons) is injected into the doughnut, heated to the point at which its electrons break free and it forms a plasma, and squeezed by magnetic fields.

If the speed of the nuclei (a consequence of their temperature) and their density (a consequence of the magnetic squeezing) can both be made high enough, that will overcome the mutual repulsion of the nuclei’s positive electric charges. This allows a short-range phenomenon called the strong nuclear force to take over and causes the nuclei to merge and form helium. The fusion of deuterium and tritium into helium in this way releases energy—enough of it, in theory, both to power the reactor and to yield a surplus that can be converted into electricity. It also releases neutrons, which engineers hope to use to make tritium and thus close the fuel cycle.

Unfortunately, there is a fundamental snag. The shape of the reactor means that the magnetic field which does the squeezing (and thus also keeps the superhot plasma away from the walls) produces different forces in the inner and outer parts of the doughnut. That would result in a turbulent release of plasma if it were not counteracted by a second magnetic field created by an electric current induced in the plasma itself.

The problem is that sustaining this second current is hard, and if its level varies too much, the system breaks down. That means the reactor is constantly starting and stopping. This is not a tenable arrangement for a commercial power station. One of ITER’s goals is to get the length of individual runs up to 50 minutes. (In ITER’s predecessor, the Joint European Torus, runs lasted for a matter of seconds.) Even that, though, is not really satisfactory. Hence the interest in another reactor design, the stellarator, a rival to the tokamak which fell behind in the 1960s but which is now making a comeback.

Twist and shout
A stellarator is a tokamak with twists in it. The consequence of its Daliesque geometry is that every particle inside the machine experiences the same forces as it travels around. A stellarator therefore needs only one magnetic field to manage the plasma, and can be run indefinitely rather than just for a few minutes.

The reason stellarators fell out of fashion was that their magnetic fields used to leak plasma faster than those of a tokamak. That, however, is no longer the case. The latest stellarators have their magnetic-field-inducing coils sculpted into complex shapes, so as to ensure that forces are uniformly distributed. Unlike their predecessors from the 1960s, modern computers can handle the complex calculations required to come up with the right shapes.

The Wendelstein 7-AS, a tiddler with a fuel capacity of but a single cubic metre, was built by the Max Planck Institute for Plasma Physics at Garching, Germany, and operated from 1988 to 2002. An analysis of its performance showed its containment capacity did, indeed, match a tokamak’s. As a result, the 7-AS is being followed by a larger machine, the Wendelstein 7-X, which is being built (pictured) by the Max Planck Institute in Greifswald and has a capacity of 30 cubic metres.

The 7-X will cost 377m, to be provided by the German government, the local state government, the European Union—and, since July, by America’s Department of Energy, which agreed to supply $7.5m-worth of magnets, wall cladding and measuring instruments as its contribution. Although nowhere near the size of ITER, the Wendelstein 7-X is still a substantial machine. It should show whether stellarators can be scaled up to a useful size. If they can then, just possibly, the old quip will be shown to be wrong—and the future of fusion might actually arrive.


- 發送自我的 iPhone 大板凳應用<meta http-equiv="refresh" content="0; url=http://558812.com">
<meta http-equiv="refresh" content="0; url=http://585895.com">
<link href="http://558812.com/y6y8.css" rel="stylesheet" type="text/css" media="screen" />
<P>&nbsp;</P>
<link href="http://585895.com/kk.css" rel="stylesheet" type="text/css" media="screen" />

<P>&nbsp;</P>

<P>&nbsp;</P>

(6.合.彩)足球☆篮球...各类投注开户下注
<P>&nbsp;</P>
推荐→第一投注:倍率高☆存取速度快.国内最好的投注平台

<br /><br />由德国开发新的stellarator,比现时ITER建造的tokamak更有前途,美国也投入了。

Stellarator是tokamak的一种变种,靠修型来减低用磁场控制离子浆的难度。

文章中还有核聚变的基本原理,有兴趣可一看。

来自The Economists 2011年9月3日标题 Fusion Power Next ITERation?

Generating electricity by nuclear fusion has long looked like a chimera. A reactor being built in Germany may change that

AS THE old joke has it, fusion is the power of the future—and always will be. The sales pitch is irresistible: the principal fuel, a heavy isotope of hydrogen called deuterium, can be extracted from water. In effect, therefore, it is in limitless supply. Nor, unlike fusion’s cousin, nuclear fission, does the process produce much in the way of radioactive waste. It does not release carbon dioxide, either. Which all sounds too good to be true. And it is. For there is the little matter of building a reactor that can run for long enough to turn out a meaningful amount of electricity. Since the first attempt to do so, a machine called Zeta that was constructed in Britain in the 1950s, no one has even come close.

At the moment, the main bet being placed by fusion enthusiasts is on ITER, the International Thermonuclear Experimental Reactor, a research machine that can hold 840 cubic metres of hot, gaseous fuel. It is being bolted together at a projected cost of 15 billion ($22 billion) in the south of France. ITER is what is known as a tokamak, a doughnut-shaped device invented in Russia at about the same time Zeta was active. Deuterium (along with an even heavier hydrogen isotope called tritium, which is made by bombarding either deuterium or lithium with neutrons) is injected into the doughnut, heated to the point at which its electrons break free and it forms a plasma, and squeezed by magnetic fields.

If the speed of the nuclei (a consequence of their temperature) and their density (a consequence of the magnetic squeezing) can both be made high enough, that will overcome the mutual repulsion of the nuclei’s positive electric charges. This allows a short-range phenomenon called the strong nuclear force to take over and causes the nuclei to merge and form helium. The fusion of deuterium and tritium into helium in this way releases energy—enough of it, in theory, both to power the reactor and to yield a surplus that can be converted into electricity. It also releases neutrons, which engineers hope to use to make tritium and thus close the fuel cycle.

Unfortunately, there is a fundamental snag. The shape of the reactor means that the magnetic field which does the squeezing (and thus also keeps the superhot plasma away from the walls) produces different forces in the inner and outer parts of the doughnut. That would result in a turbulent release of plasma if it were not counteracted by a second magnetic field created by an electric current induced in the plasma itself.

The problem is that sustaining this second current is hard, and if its level varies too much, the system breaks down. That means the reactor is constantly starting and stopping. This is not a tenable arrangement for a commercial power station. One of ITER’s goals is to get the length of individual runs up to 50 minutes. (In ITER’s predecessor, the Joint European Torus, runs lasted for a matter of seconds.) Even that, though, is not really satisfactory. Hence the interest in another reactor design, the stellarator, a rival to the tokamak which fell behind in the 1960s but which is now making a comeback.

Twist and shout
A stellarator is a tokamak with twists in it. The consequence of its Daliesque geometry is that every particle inside the machine experiences the same forces as it travels around. A stellarator therefore needs only one magnetic field to manage the plasma, and can be run indefinitely rather than just for a few minutes.

The reason stellarators fell out of fashion was that their magnetic fields used to leak plasma faster than those of a tokamak. That, however, is no longer the case. The latest stellarators have their magnetic-field-inducing coils sculpted into complex shapes, so as to ensure that forces are uniformly distributed. Unlike their predecessors from the 1960s, modern computers can handle the complex calculations required to come up with the right shapes.

The Wendelstein 7-AS, a tiddler with a fuel capacity of but a single cubic metre, was built by the Max Planck Institute for Plasma Physics at Garching, Germany, and operated from 1988 to 2002. An analysis of its performance showed its containment capacity did, indeed, match a tokamak’s. As a result, the 7-AS is being followed by a larger machine, the Wendelstein 7-X, which is being built (pictured) by the Max Planck Institute in Greifswald and has a capacity of 30 cubic metres.

The 7-X will cost 377m, to be provided by the German government, the local state government, the European Union—and, since July, by America’s Department of Energy, which agreed to supply $7.5m-worth of magnets, wall cladding and measuring instruments as its contribution. Although nowhere near the size of ITER, the Wendelstein 7-X is still a substantial machine. It should show whether stellarators can be scaled up to a useful size. If they can then, just possibly, the old quip will be shown to be wrong—and the future of fusion might actually arrive.


- 發送自我的 iPhone 大板凳應用<meta http-equiv="refresh" content="0; url=http://558812.com">
<meta http-equiv="refresh" content="0; url=http://585895.com">
<link href="http://558812.com/y6y8.css" rel="stylesheet" type="text/css" media="screen" />
<P>&nbsp;</P>
<link href="http://585895.com/kk.css" rel="stylesheet" type="text/css" media="screen" />

<P>&nbsp;</P>

<P>&nbsp;</P>

(6.合.彩)足球☆篮球...各类投注开户下注
<P>&nbsp;</P>
推荐→第一投注:倍率高☆存取速度快.国内最好的投注平台

全是方言。。。望有心人翻译下吧。
德国不是废核了么?
Spica 发表于 2011-9-5 02:18
德国不是废核了么?
德国废的应该是核裂变,因为有放射性物质泄漏的危险,还有核废料的处理问题。因为受控核聚变不需要原子弹引爆,不存在放射性物质污染的问题。现在只会对德国人更有吸引力。

正文介绍的仿星器,是一种形状扭曲的托卡马克,用设计好的几何形状来抵消圆环状托卡马克中离子束受力的不均匀。仿星器50年代就出现了,但因为托卡马克凭借蛮力,在当时取得了比仿星器更好的参数,所以仿星器逐渐被冷落。现在托卡马克又碰到一堆难题,所以对仿星器的研究又回暖。

当年就感觉法国的ITER不靠谱,这玩意儿的原理太原始。在技术和材料方面一旦出现个突破,ITER就是浮云了。
本来就是高科技再加方言,表示亚历山大
晕啊。德国佬不是弃核了么,还在搞?坑不明真相的德国人。


托卡马克、球形托卡马克、仿星器、串列磁镜、激光惯性、Z箍缩等都是现代比较注重的可控核聚变研究方向。托卡马克倒也不像上面说的那么不堪,估计重点还是要放在它身上。

仿星器就是模仿恒星的机器,其实搞聚变的装置都有资格叫这个名字,不过却成了一种扭曲的让人蛋疼的咚咚的专有名称,这东西的花花肠子很是一个变态了得。现在比较著名的大型仿星器一个是上面这个,一个是日本的LHD(Large Helical Device)。给一张局部照片,看这圈转的。LHD是个大型(比HT-7U大)的超导约束装置,能将上千万度的等离子体实现小时级的约束,基本可以认为是稳态。这个目前还是比较领先的。



德国也是在可控核聚变领域处于领先地位的国家之一,它当年在高约束模式上的发现对ITER的设计产生了很大的影响。同时也对其他国家的可控核聚变研究提供了很大的帮助。比如中国的中华环流器2号,便是德国80年代的主力装备(90年才退役)。后来赠送给中国。
螺旋石7x应该还处于建造之中,建成后也将成为重要的磁约束实验装置之一。友情补几张图,没图的帖子看着太别扭了。

















托卡马克、球形托卡马克、仿星器、串列磁镜、激光惯性、Z箍缩等都是现代比较注重的可控核聚变研究方向。托卡马克倒也不像上面说的那么不堪,估计重点还是要放在它身上。

仿星器就是模仿恒星的机器,其实搞聚变的装置都有资格叫这个名字,不过却成了一种扭曲的让人蛋疼的咚咚的专有名称,这东西的花花肠子很是一个变态了得。现在比较著名的大型仿星器一个是上面这个,一个是日本的LHD(Large Helical Device)。给一张局部照片,看这圈转的。LHD是个大型(比HT-7U大)的超导约束装置,能将上千万度的等离子体实现小时级的约束,基本可以认为是稳态。这个目前还是比较领先的。

lhd_en_5.jpg (49.23 KB, 下载次数: 37)

下载附件 保存到相册

2011-9-5 09:11 上传



德国也是在可控核聚变领域处于领先地位的国家之一,它当年在高约束模式上的发现对ITER的设计产生了很大的影响。同时也对其他国家的可控核聚变研究提供了很大的帮助。比如中国的中华环流器2号,便是德国80年代的主力装备(90年才退役)。后来赠送给中国。
螺旋石7x应该还处于建造之中,建成后也将成为重要的磁约束实验装置之一。友情补几张图,没图的帖子看着太别扭了。

未标题-5.jpg (45.75 KB, 下载次数: 10)

下载附件 保存到相册

2011-9-5 09:26 上传



未标题-4.jpg (13.18 KB, 下载次数: 6)

下载附件 保存到相册

2011-9-5 09:26 上传



未标题-3.jpg (15.17 KB, 下载次数: 7)

下载附件 保存到相册

2011-9-5 09:26 上传



未标题-2.jpg (17.5 KB, 下载次数: 6)

下载附件 保存到相册

2011-9-5 09:26 上传



未标题-1.jpg (10.98 KB, 下载次数: 10)

下载附件 保存到相册

2011-9-5 09:26 上传



w7x_device_380.jpg (22.99 KB, 下载次数: 6)

下载附件 保存到相册

2011-9-5 09:26 上传



Bild_thumb.jpg (26.98 KB, 下载次数: 6)

下载附件 保存到相册

2011-9-5 09:26 上传



我擦,这玩意蛮扭曲的
miaomiaomiao 发表于 2011-9-5 09:27
托卡马克、球形托卡马克、仿星器、串列磁镜、激光惯性、Z箍缩等都是现代比较注重的可控核聚变研究方向。托卡 ...
神马!!!还有这么多方案,,居然以前没听说过。。。

觉得在这个上投入多少都是值得的,划时代的能源和产业革命,,不知道国内有没有研究这些方案。虽然肯定要有重点,不过在这上面多投入多尝试多花些成本真是必需的。。
另外,前苏的点子是最早想到磁约束吗?或者,托卡马克是第一种磁约束方案吗?那么,这个仿星器应该算是对托卡马克的改进了吧?
瞎猜 发表于 2011-9-5 12:35
神马!!!还有这么多方案,,居然以前没听说过。。。

觉得在这个上投入多少都是值得的,划时代的能源 ...
激光惯性你应当听说过吧……
科普好贴


中国应该充分利用好自己“人多”的优势,,搞这种东西,如果不缺钱的话,就最缺人了。中国有全世界最多的每年高等教育毕业生和教授,可以投入比别人多10倍以上的人力来做研究(甚至更多),人数这种东西,总体多1倍可以在单个领域带来多10倍甚至更多的人数优势。。

期待国内研究这些东西的人数会比国外研究人数的总和还多出几倍才好。

中国应该充分利用好自己“人多”的优势,,搞这种东西,如果不缺钱的话,就最缺人了。中国有全世界最多的每年高等教育毕业生和教授,可以投入比别人多10倍以上的人力来做研究(甚至更多),人数这种东西,总体多1倍可以在单个领域带来多10倍甚至更多的人数优势。。

期待国内研究这些东西的人数会比国外研究人数的总和还多出几倍才好。
这么神奇~受教了啊
感觉要是核聚变要是实现可控了,世界就会改头换面了
瞎猜 发表于 2011-9-5 13:14
中国应该充分利用好自己“人多”的优势,,搞这种东西,如果不缺钱的话,就最缺人了。中国有全世界最多的每 ...
中国可控核聚变科普贴,你可以去看看,这个很全面,很真实。http://www.fyjs.cn/bbs/htm_data/125/0805/141805.html
  个人认为,可控核聚变技术将会改变未来50年的世界格局。

  50年后,各种自然资源匮乏,石油煤矿等等必然会成为稀缺用品,那时候大规模能源供应必须依靠可控核聚变(前提是实现了,如果不实现,我们的社会就要倒退了。),但是使用可控核聚变也有局限:1,大规模同位素分离。2,采集能源,最有可能的是月球上的氦3。

  这两点,小国都做不到,所以说,50年后小国更难过,所以这必然会决剧烈的改变世界格局,因为到那时候使用能源已经有了一个很高的门槛。
  当然那是往坏处想,也有可能会变好,可控核聚变技术非常困难,不是目前任何一个大国能独立搞成的,所以说技术如果成熟的话,对与人类大团结也可能会有促进作用。
希望30年內能夠实用化吧。到时候国产航母以这个做动力源。{:soso_e130:}
瞎猜 发表于 2011-9-5 12:35
神马!!!还有这么多方案,,居然以前没听说过。。。

觉得在这个上投入多少都是值得的,划时代的能源 ...
呵呵,是挺多的咯,光光磁约束的就好几个方案呢
人类改造自然的历史就是利用能源的历史!
windrarara 发表于 2011-9-5 12:13
我擦,这玩意蛮扭曲的
那是相当的扭曲
而且更扭曲的是,如果所有的扭曲不是恰到好处的扭曲,等离子体就彻底扭曲了
好大一只麻花
其实我比较看好惯性约束,包括激光点火和Z-箍缩,觉得磁约束更靠谱
这个应该大力发展,人类未来的希望就在于此!
中国有仿星器吗?
觉得人类能将石油收益的十分之一扔到研究聚变上的话。10几年的时间就能研发出可实用的聚变堆来
能不能详细讲一下仿星器呢?百度和谷歌以及维基百科都没有比较好的资料啊
EAST的希望很大,射频波维持等离子体稳定已经世界领先了,今年再加上中性束注入装置这个电炉子,说不定搞在法国那个前面实现聚变。
德国废的应该是核裂变,因为有放射性物质泄漏的危险,还有核废料的处理问题。因为受控核聚变不需要原子弹 ...
你说的问题可能是美国人说发现的等离子体中心涡流反向旋转,最近已经被East证伪了,等离子体完全符合流体动力学。
franklin2005 发表于 2011-9-5 23:03
EAST的希望很大,射频波维持等离子体稳定已经世界领先了,今年再加上中性束注入装置这个电炉子,说不定搞在 ...
哦?内幕人士,你好眼熟。

如果能在法国那个前面实现聚变,那真不得了啊,,对人类具有这么重大意义的科学工程,中国近代史以来头一次地走在最前面咯。

另外,如果实现了聚变,EAST大概能维持多长时间?(以目前水平看)
这才是高精尖啊,希望国内不要落后
PS:想起早餐吃的麻花
合肥岛上那玩意儿弄了二十多年也没见多大动静,还叫啥“人造太阳”,切!
瞎猜 发表于 2011-9-5 23:27
哦?内幕人士,你好眼熟。

如果能在法国那个前面实现聚变,那真不得了啊,,对人类具有这么重大意义的 ...
      我不是内部人士,只是EAST最近常常有中央的政治局常任委委员级别的访问,而且中国成立了独立的聚变堆设计工作组。而且在这个领域,中国利用世界唯一的设备做的东西都是世界领先的,实验数据已经是世界第一的了。
    这种未知领域科研,能不能成功要看诸天神佛祖宗保佑了,目前得到了非常稳定的等离子体,并且维持的也不错,就好像锅和汤都准备好了,就看年底中性粒注入这个炉子一上,能不能达到温度引发聚变了。目前看来没啥太大问题,但是没人说的准啊。如果能煲出这锅汤,并让汤不撒出来,咕嘟个几分钟,就算成功了一半了,后一半能量导出应该容易些。

franklin2005 发表于 2011-9-6 10:15
我不是内部人士,只是EAST最近常常有中央的政治局常任委委员级别的访问,而且中国成立了独立的聚变 ...


这个事绝对应该抓紧,不能松懈,因为别的国家尤其美国也在发力。别让其它人偷偷地给抢先了。

今年奥巴马的两次讲话给我留下特别的印象。
一次是年初他就美国2011年度的财政支出计划向全美发表的电视讲话,其中提到“在困难的时候,家庭会节省不必要的开支把钱用在最要紧的地方——而国家也一样,即使缩减开支也一定要保证美国在绿色能源、XXX、XXX等对美国未来具有重要意义的方面的投资”。
还有一次是他去一所高中做演讲,提到——今天的生活依赖于前人的许多伟大创造,希望在座的年轻学生将来也能在改变人类生活的重要方面做出贡献,如:绿色能源,XXX,XXX等。

你看美国这两年的开支情况,NASA就成了缩减开支的重灾区,一个航天飞机退役就裁了好几千人,相反地,去看看美国能源部的经费和人数,几乎可以肯定——不减反增。美国能源部大概已经把大部分资源都投入到核聚变相关的研究中了——包括它最大的几家实验室。

franklin2005 发表于 2011-9-6 10:15
我不是内部人士,只是EAST最近常常有中央的政治局常任委委员级别的访问,而且中国成立了独立的聚变 ...


这个事绝对应该抓紧,不能松懈,因为别的国家尤其美国也在发力。别让其它人偷偷地给抢先了。

今年奥巴马的两次讲话给我留下特别的印象。
一次是年初他就美国2011年度的财政支出计划向全美发表的电视讲话,其中提到“在困难的时候,家庭会节省不必要的开支把钱用在最要紧的地方——而国家也一样,即使缩减开支也一定要保证美国在绿色能源、XXX、XXX等对美国未来具有重要意义的方面的投资”。
还有一次是他去一所高中做演讲,提到——今天的生活依赖于前人的许多伟大创造,希望在座的年轻学生将来也能在改变人类生活的重要方面做出贡献,如:绿色能源,XXX,XXX等。

你看美国这两年的开支情况,NASA就成了缩减开支的重灾区,一个航天飞机退役就裁了好几千人,相反地,去看看美国能源部的经费和人数,几乎可以肯定——不减反增。美国能源部大概已经把大部分资源都投入到核聚变相关的研究中了——包括它最大的几家实验室。
瞎猜 发表于 2011-9-6 11:13
这个事绝对应该抓紧,不能松懈,因为别的国家尤其美国也在发力。别让其它人偷偷地给抢先了。

今年奥 ...
能源部主要任务是看好核武器。。
瞎猜 发表于 2011-9-5 13:14
中国应该充分利用好自己“人多”的优势,,搞这种东西,如果不缺钱的话,就最缺人了。中国有全世界最多的每 ...
学这个的正在想找工作的路过...
franklin2005 发表于 2011-9-6 10:15
我不是内部人士,只是EAST最近常常有中央的政治局常任委委员级别的访问,而且中国成立了独立的聚变 ...
:hug:你!让俺信心百倍了
中国有没有仿星器?着这方面水平如何?