俄罗斯为核动力飞船反应堆组装出“热源”

来源:百度文库 编辑:超级军网 时间:2024/04/29 04:04:01
俄罗斯为核动力飞船反应堆组装出“热源”



2014-07-14  来源:新华网 作者: 责任编辑:查云帆



  为了更远、更快地飞向太空,研发人员一直对核动力飞船倾注心血。近日,该领域的研发取得一项实质性进展:俄科研人员组装出了为未来核动力飞船反应堆服务的“热源”——核燃料释热元件,随后的一系列测试将于今年展开。

  该元件的领衔设计单位——俄能源技术科研和设计研究所的首席设计师切列普宁日前对媒体说,未来的行星际飞船应着重考虑采用核动力装置。该研究所制定的核动力装置规划,已于2009年获得俄总统领导的现代化与经济技术发展委员会批准,该装置的草图设计已在2011年年底定稿。

  依据设计,这种核动力装置将采用尺寸不大的气冷式快中子反应堆,所用核燃料为高浓缩二氧化铀,其浓度高于普通核电站燃料。二氧化铀发生核裂变后,会产生极高热能,这些热能要通过反应堆内的释热元件并借助气态载热剂输送到反应堆外。这一重要元件已在本月初由俄联邦能源署下属研制机构组装完毕,目前全球尚无与之类似的元件。

  切列普宁介绍说,俄最终制成的将是兆瓦级核动力装置,其工作温度比同类普通装置高约一千摄氏度。为适应这种高温,反应堆释热元件的外壳将采用以钼制成的难熔金属单晶熔合物材料。从反应堆内导出的热能会推动涡轮机组发电,所生成的电能将源源不断地供电喷发动机使用。

  这种发动机内的氦-氙混合剂会通过电离生成离子流,而核电所生成的强大电场会推动该离子流向飞船后方高速喷出,从而获得喷射推进力,使飞船以更短时间飞向火星等太阳系行星,或在近地空间绕飞更长时间。在这一过程中,不会有放射物被释放到太空中。据估算,如此制成的电喷发动机的单位推进力是化学燃料发动机的20倍。

  据参与研发的俄“克尔德什”科学中心主任卡罗捷耶夫回忆,其“前辈”于上世纪60年代开始研制航天核动力装置,但最初制成的发动机在工作异常时会喷出放射性氢,如今的设计方案已修订了无数次。

  如一切顺利,包含上述所有元部件的核动力装置将于2018年建成。迄今,俄已从国家预算中为研制相关反应堆、发动机和太空舱总共拨款170亿卢布(约合31亿元人民币)。






http://www.chinanews.com/gj/2014/07-14/6384574.shtml俄罗斯为核动力飞船反应堆组装出“热源”



2014-07-14  来源:新华网 作者: 责任编辑:查云帆



  为了更远、更快地飞向太空,研发人员一直对核动力飞船倾注心血。近日,该领域的研发取得一项实质性进展:俄科研人员组装出了为未来核动力飞船反应堆服务的“热源”——核燃料释热元件,随后的一系列测试将于今年展开。

  该元件的领衔设计单位——俄能源技术科研和设计研究所的首席设计师切列普宁日前对媒体说,未来的行星际飞船应着重考虑采用核动力装置。该研究所制定的核动力装置规划,已于2009年获得俄总统领导的现代化与经济技术发展委员会批准,该装置的草图设计已在2011年年底定稿。

  依据设计,这种核动力装置将采用尺寸不大的气冷式快中子反应堆,所用核燃料为高浓缩二氧化铀,其浓度高于普通核电站燃料。二氧化铀发生核裂变后,会产生极高热能,这些热能要通过反应堆内的释热元件并借助气态载热剂输送到反应堆外。这一重要元件已在本月初由俄联邦能源署下属研制机构组装完毕,目前全球尚无与之类似的元件。

  切列普宁介绍说,俄最终制成的将是兆瓦级核动力装置,其工作温度比同类普通装置高约一千摄氏度。为适应这种高温,反应堆释热元件的外壳将采用以钼制成的难熔金属单晶熔合物材料。从反应堆内导出的热能会推动涡轮机组发电,所生成的电能将源源不断地供电喷发动机使用。

  这种发动机内的氦-氙混合剂会通过电离生成离子流,而核电所生成的强大电场会推动该离子流向飞船后方高速喷出,从而获得喷射推进力,使飞船以更短时间飞向火星等太阳系行星,或在近地空间绕飞更长时间。在这一过程中,不会有放射物被释放到太空中。据估算,如此制成的电喷发动机的单位推进力是化学燃料发动机的20倍。

  据参与研发的俄“克尔德什”科学中心主任卡罗捷耶夫回忆,其“前辈”于上世纪60年代开始研制航天核动力装置,但最初制成的发动机在工作异常时会喷出放射性氢,如今的设计方案已修订了无数次。

  如一切顺利,包含上述所有元部件的核动力装置将于2018年建成。迄今,俄已从国家预算中为研制相关反应堆、发动机和太空舱总共拨款170亿卢布(约合31亿元人民币)。






http://www.chinanews.com/gj/2014/07-14/6384574.shtml
到底是发动机,热源还是反应堆?
这算离子推吧?
raptorlead 发表于 2014-7-14 16:12
到底是发动机,热源还是反应堆?
上面不是说了:核燃料释热元件.
毛子的消息应该是指核燃料及其控制装置.



没错 应该是空间堆+离子电推

从反应堆内导出的热能会推动涡轮机组发电


反应堆输出的是电

氦-氙混合剂会通过电离生成离子流...核电所生成的强大电场会推动该离子流...单位推进力是化学燃料发动机的20倍


符合电推的特征,单位推进力如果指的是比冲,那么400s左右的氢氧机乘以20,大概8000s,也是电推的大致范围
jacksmith 发表于 2014-7-14 16:32
这算离子推吧?


没错 应该是空间堆+离子电推

从反应堆内导出的热能会推动涡轮机组发电


反应堆输出的是电

氦-氙混合剂会通过电离生成离子流...核电所生成的强大电场会推动该离子流...单位推进力是化学燃料发动机的20倍


符合电推的特征,单位推进力如果指的是比冲,那么400s左右的氢氧机乘以20,大概8000s,也是电推的大致范围


360截图-233050080.jpg

核裂变热能→机械能→电能→离子动能

俄罗斯研发核推进的工作始于1950年。在1965年,决定建造冲力36kN、比冲大于900s的核火箭发动机RD-0410(11B91)。为了提供与核热推进系统实际运行工况一致的试验条件,专门建立了“IGR”高通量石墨脉冲堆、“IVG-I”实验反应堆和“IRGIT”实验性原型堆。在“IGR”反应堆上完成了核热推进系统燃料元件的动态试验,在“IVG-1”反应堆上完成了燃料组件的寿命考验,把“IRGIT”实验性原型堆运行到90MW的功率水平。俄罗斯在核热推进方面取得的重大成就在于,成功研制了核火箭发动机的燃料元件和燃料组件,建造出了RD-0410型核火箭发动机试验样机,在著名《贝加尔》试验台架上完成了全尺寸核火箭发动机反应堆的几个试验系列,验证了建造核火箭发动机以及双模式(电源/推进)空间核动力系统的可行性

美国在六零年代曾经进行过一项称之为「核子引擎火箭推进系统应用」的研究计画,(Nuclear Engine for Rocket Vehicle Applications,NERVA)测试过这类核子火箭的可能性。

即使NERVA 计画结束,大量理论方面的基础研究并未跟著停止。就核分裂热推进系统而言,理论上具有另一种较为优秀的引擎存在,即气态核心反应炉。这是相对于NERVA 计画中使用的固态(石墨)核心反应炉而言,以铀电浆与氢混和的气态炉心反应炉。其比冲潜力在5000秒~10000秒之间。这类引擎的困难与受控核融合炉有点类似,皆为炉心高温气体的处理相当麻烦。不过由于其并非欲进行核融合,气体温度仅约摄氏数万度,远较融合炉的数千万到上亿度为低,因而难度低了许多。若取理论平均值7000秒比冲来计算,则使用这类系统的标准太空船之ΔV可达到6538m/sec。

但这类系统,包含固态炉心的 NERVA计画都有个相似的缺点,即其排气具有放射性,因此不能在地球上使用。在太空中则无妨,因放射性气体会很快扩散开来。核分裂系统的理想喷气值约为11200km/s。

《《《跟文中提到的“最初制成的发动机在工作异常时会喷出放射性氢”相吻合,另可知这个气态载热剂与释热元件的工作温度应该在几万度
“如今的设计方案已修订了无数次”也应该是得益于当下对于快中子反应堆研究的进步,自然不能和20世纪60年代同日而语
加上俄罗斯的投入,目测核动力载人飞船会在当代人手里实现

http://tieba.baidu.com/p/1260446319

360截图-233050080.jpg

核裂变热能→机械能→电能→离子动能

俄罗斯研发核推进的工作始于1950年。在1965年,决定建造冲力36kN、比冲大于900s的核火箭发动机RD-0410(11B91)。为了提供与核热推进系统实际运行工况一致的试验条件,专门建立了“IGR”高通量石墨脉冲堆、“IVG-I”实验反应堆和“IRGIT”实验性原型堆。在“IGR”反应堆上完成了核热推进系统燃料元件的动态试验,在“IVG-1”反应堆上完成了燃料组件的寿命考验,把“IRGIT”实验性原型堆运行到90MW的功率水平。俄罗斯在核热推进方面取得的重大成就在于,成功研制了核火箭发动机的燃料元件和燃料组件,建造出了RD-0410型核火箭发动机试验样机,在著名《贝加尔》试验台架上完成了全尺寸核火箭发动机反应堆的几个试验系列,验证了建造核火箭发动机以及双模式(电源/推进)空间核动力系统的可行性

美国在六零年代曾经进行过一项称之为「核子引擎火箭推进系统应用」的研究计画,(Nuclear Engine for Rocket Vehicle Applications,NERVA)测试过这类核子火箭的可能性。

即使NERVA 计画结束,大量理论方面的基础研究并未跟著停止。就核分裂热推进系统而言,理论上具有另一种较为优秀的引擎存在,即气态核心反应炉。这是相对于NERVA 计画中使用的固态(石墨)核心反应炉而言,以铀电浆与氢混和的气态炉心反应炉。其比冲潜力在5000秒~10000秒之间。这类引擎的困难与受控核融合炉有点类似,皆为炉心高温气体的处理相当麻烦。不过由于其并非欲进行核融合,气体温度仅约摄氏数万度,远较融合炉的数千万到上亿度为低,因而难度低了许多。若取理论平均值7000秒比冲来计算,则使用这类系统的标准太空船之ΔV可达到6538m/sec。

但这类系统,包含固态炉心的 NERVA计画都有个相似的缺点,即其排气具有放射性,因此不能在地球上使用。在太空中则无妨,因放射性气体会很快扩散开来。核分裂系统的理想喷气值约为11200km/s。

《《《跟文中提到的“最初制成的发动机在工作异常时会喷出放射性氢”相吻合,另可知这个气态载热剂与释热元件的工作温度应该在几万度
“如今的设计方案已修订了无数次”也应该是得益于当下对于快中子反应堆研究的进步,自然不能和20世纪60年代同日而语
加上俄罗斯的投入,目测核动力载人飞船会在当代人手里实现

http://tieba.baidu.com/p/1260446319
毛子的和技术还是很高升的!!!真有点口水啊 !
这方面感觉翻来覆去强国在做一件事情,那就是研究突破核能的可控化,进而完成可控核能应用的多变化。