超光速粒子

来源:百度文库 编辑:超级军网 时间:2024/04/29 09:11:32
超高速的快子
2012-04-30 本文行家:宇宙与道
   
20世纪60年代以来,有人提出了超光速粒子的新课题,他们称这种粒子为“快子’。超光速理论工作一般从狭义相对论出发,将其推广,求得既适合于慢子(低于光速的粒子)和光子,又适合于快子的相对论理论。据理论上的推测,快子具有奇异的物理性质。它的质量是虚数,它的速度将随能量的耗散而无限增加,当它的能量趋于零时,则速度趋于无穷大。

目录
快子 - 概念
快子 - 性质
快子 - 快子的提出
快子 - 研究发展
快子 - 快子与时空
快子 - 快子与因果性

快子 - 概念
快子(tachyon):也被称为迅子、速子,是一个理论上预见的超光速粒子。从相对论衍生出的假想粒子,总是以高于光速c的速度在宇宙运行。与一般物质称为(慢子(tardyon))的相互作用可能性不明显,所以即使其存在也不一定能侦测得到。

快子 - 性质
超光速理论工作一般从狭义相对论出发,将其推广,求得既适合于慢子(低于光速的粒子)和光子,又适合于快子的相对论理论。据理论上的推测,快子具有奇异的物理性质。它的质量是虚数,它的速度将随能量的耗散而无限增加,当它的能量趋于零时,则速度趋于无穷大。快子一旦产生,就具有大于光速的速度。要使它的速度减小,必须供给它能量。如要减小到光速,则必须供给它无限大的能量才行,因此其速度不可能减小到光速或低于光速。快子的负能问题是一个复杂的问题。由于负能量的出现,将意味着任何一个物理系统,因为可能无限地释放快子而处于不稳定状态,系统将无限地增加自己的能量,从而导致永动机的出现。而且,更为使人惊异的是,即使无限地产生快子对,也不会破坏能量动量守恒定律,同时也不会改变真空中的总能量。另外,根据洛伦兹变换,快子从一个坐标系转换到另一个坐标系的过程中,可能改变时间的顺序,即时间倒流。这样一来,也许就要出现像打油诗“年青女郎名葆蕾,神行有术光难追,快子理论来指点,今日出游昨夜归”所描绘的“奇迹”。这两个困难问题虽然可以借助二次说明原理(即应该将一个具有负能量的粒子看作是先被吸收,然后再发射,这样一来,负能量与时间倒流和正能量与时间顺流的物理意义完全一样,因而变换坐标系后物理定律依然不变)来解释,但它并没有解决不变的因果律的问题。另外,快子有可能以无限大的速度传播,因而假若存在着快子,就可能瞬时传递作用信息,似乎又可能回到“超距作用”论的概念上去。不过,近10多年来,虽说在理论方面和实验方面都作了不少的工作,但至今尚未取得重大突破。要使快子理论与现代物理学理论协调起来,还需要克服相当多的困难。不过,这却有可能迫使人们跳出目前的理论框架,克服早已习惯了的观念,从而产生巨大而深远的影响。

电磁性质包括

四维波数与亚光速变换一样,仍用相位不变性来定义四维波数:因此四维波数在超光速坐标变换下是虚鹰矢。

电荷与电荷密度我们认定物体总荷电量与坐标系无关。由于运动方向的尺度发生变化,(超光速下不是尺缩而是尺胀),电荷密度p与荷电体的三维速度有关,因而也与坐标系有关。考虑到超光速粒子(快子)的电荷与电磁场与亚光速粒子的电荷及电磁场性质应该相同,因此不论‘快子’与‘慢子’,电荷密度p的表达式应该同一。

电流密度对于任意惯性系,定义四维电流密度现在考虑J的变换性质。基于与讨论P时的同样理由,我们认定J,经超光速变换后其前三个分量即实际三维电流密度保持实值,第四分量保持纯虚位,这与亚光速变换相同。

快子 - 快子的提出
爱因斯坦在1922年就光速不变原理写道:“相对论常遭指责,说它未加论证就把光的传播放在中心理论的地位,以光的传播定律作为时间概念的基础。然而情形大致如下:为丁赋予时间概念以物理意义,需要某种能建立不同地点之间的关系的过程。为这样的时间定义,究竟选择哪一种过程是无关重要的。可是为了理论只选用那种已有某些肯定解的过程是有好处的。由于麦克斯韦与洛伦兹的研究之赐,和任何其他考虑的过程相比,我们对于光在真空中的传播是了解得更清楚的。”

事隔60余年,这种状况并没有得到改变。在爱因斯坦提出光速不变原理时,已有的实验只是说明在闭合回路中平均光速的不变性,而不是光速不变原理本身。能不能找到更为基本的对钟手段,或者通过其他途径,来检验光速不变所包含的假定,是有待于科学实验进一步发展来解答的基本问题。因为光速不变原理是现代物理学的柱石之一,解决这个问题难度较大,影响深远,结果到底如何,人们将拭目以待。

20世纪60年代以来,有人提出了超光速粒子的新课题,他们称这种粒子为“快子”。超光速理论工作一般从狭义相对论出发,将其推广,求得既适合于慢子(低于光速的粒子)和光子,又适合于快子的相对论理论。

快子 - 研究发展
20世纪20年代量子力学建立以后,狭义和广义相对论与量子理论相结合,一直是理论物理学发展的坚实基础。半个世纪以来,这种结合不断发展和深化,也不断接受科学实验的检验。一方面,实验事实充分证明相对论和量子力学在其有效范围内是可靠的理论;另一方面,实验研究和理论进展表明,它们也遇到了一些难以解决的反常问题,其中一些问题是带有根本性的和革命性的,似乎难以容纳在相对论和量子力学的框架内。因此,在相对论和量子力学还处于兴盛时期的今天,汲取这些理论的真理性的内容,克服它们所面临的疑难,进一步探索自然界的奥秘,就已经提到当代物理学家的议事日程上来了。在这里,我们拟就当代物理学的现状和革命趋势,简要地作一点不甚全面的述评。

狭义相对论诞生以后,人们就一直设法做实验来验证它。1958年,有人改进了迈克耳孙-莫雷实验,得到了“以太风”小于地球轨道速度的1/1000的结论。后来利用穆斯堡尔效应,测得“以太风”的速度为1.6±2.8米/ 秒,远远小于期望值(30公里/秒)。这既是对狭义相对论的验证,也证明根本不存在19世纪的作为电磁场载体的以太。尤其明显的是,从宇宙线的探测到高能加速器以及对撞机的应用,几乎高能物理实验的各个方面都要涉及狭义相对论效应,可是随着加速能量的不断提高,现在已经确认在小到约为一个质子半径百分之一的距离内,没有观测到狭义相对论的破坏。有人进行了静止光子质量的实验及光速测定的实验,还有人进行了大量有关运动介质的电动力学实验和直接检验尺缩钟慢的相对论效应实验,甚至有人用高速喷气飞机上的原子钟验证运动时钟变慢的效应。所有这些实验都表明,无论在微观尺度还是在宏观尺度,还没有发现狭义相对论有破坏的迹象。

但是,这一切并不意味着狭义相对论就毋庸置疑了,就没有进一步探讨的必要了。情况完全不是这样。尽管狭义相对论的具体结论得到了实验验证,但是只要它的两个逻辑前提——相对性原理和光速不变原理——未有确凿的实验证据,它们就仍然带有假设成分和“先验”性质。爱因斯坦在提出这两条原理时也是意识到这一点的。例如,他在1922年就光速不变原理写道:“相对论常遭指责,说它未加论证就把光的传播放在中心理论的地位,以光的传播定律作为时间概念的基础。然而情形大致如下:为丁赋予时间概念以物理意义,需要某种能建立不同地点之间的关系的过程。为这样的时间定义,究竟选择哪一种过程是无关重要的。可是为了理论只选用那种已有某些肯定解的过程是有好处的。由于麦克斯韦与洛伦兹的研究之赐,和任何其他考虑的过程相比,我们对于光在真空中的传播是了解得更清楚的。”

事隔60余年,这种状况并没有得到改变。在爱因斯坦提出光速不变原理时,已有的实验只是说明在闭合回路中平均光速的不变性,而不是光速不变原理本身。能不能找到更为基本的对钟手段,或者通过其他途径,来检验光速不变所包含的假定,是有待于科学实验进一步发展来解答的基本问题。因为光速不变原理是现代物理学的柱石之一,解决这个问题难度较大,影响深远,结果到底如何,人们将拭目以待。

60年代以来,有人提出了超光速粒子的新课题,他们称这种粒子为“快子”。超光速理论工作一般从狭义相对论出发,将其推广,求得既适合于慢子(低于光速的粒子)和光子,又适合于快子的相对论理论。据理论上的推测,快子具有奇异的物理性质。它的质量是虚数,它的速度将随能量的耗散而无限增加,当它的能量趋于零时,则速度趋于无穷大。快子一旦产生,就具有大于光速的速度。要使它的速度减小,必须供给它能量。如要减小到光速,则必须供给它无限大的能量才行,因此其速度不可能减小到光速或低于光速。快子的负能问题是一个复杂的问题。由于负能量的出现,将意味着任何一个物理系统,因为可能无限地释放快子而处于不稳定状态,系统将无限地增加自己的能量,从而导致永动机的出现。而且,更为使人惊异的是,即使无限地产生快子对,也不会破坏能量动量守恒定律,同时也不会改变真空中的总能量。另外,根据洛伦兹变换,快子从一个坐标系转换到另一个坐标系的过程中,可能改变时间的顺序,即时间倒流。这样一来,也许就要出现像打油诗“年青女郎名葆蕾,神行有术光难追,快子理论来指点,今日出游昨夜归”所描绘的“奇迹”。这两个困难问题虽然可以借助二次说明原理(即应该将一个具有负能量的粒子看作是先被吸收,然后再发射,这样一来,负能量与时间倒流和正能量与时间顺流的物理意义完全一样,因而变换坐标系后物理定律依然不变)来解释,但它并没有解决不变的因果律的问题。另外,快子有可能以无限大的速度传播,因而假若存在着快子,就可能瞬时传递作用信息,似乎又可能回到“超距作用”论的概念上去。不过,近10多年来,虽说在理论方面和实验方面都作了不少的工作,但至今尚未取得重大突破。要使快子理论与现代物理学理论协调起来,还需要克服相当多的困难。不过,这却有可能迫使人们跳出目前的理论框架,克服早已习惯了的观念,从而产生巨大而深远的影响。

相对性原理是狭义相对论的另一个基本原理,它认为一切惯性系彼此等价,没有任何实验能确定那个更为优越。但是,作为现代宇宙学两个理论基础之一的哥白尼原理(另一个是广义相对论)却要求,存在着描述宇宙演化的宇宙时标和宇宙空间的标准坐标,典型星系或星系团在其中的分布是均匀各向同性的。宇宙背景辐射和各向同性的发现等大量观察资料都支持把哥白尼原理作为描述宇宙大尺度行为的基本原理。于是,宇宙时标就是相对优越的时标,它描述着宇宙的演化,而相对于这个时标的同时性在宇宙演化上具有本质的意义。典型星系或星系团均匀各向同性的空间就是宇宙背景空间,它相当于一个优越的坐标系。可以推知,若在相对于该坐标系以某一速度运动的参照系上观测星系,就会发现它们的分布不是均匀各向同性的,因此原则上就有可能测出运动坐标系相对于优越背景空间的速度。现在,已有人测出地球相对于各向同性背景辐射(优越的背景空间)的速度为每秒数百公里,这和地球相对于典型星系或星系团的速度是基本一致的。众所周知,作为整个相对论物理学根基的狭义相对论,恰恰否定了牛顿的绝对时间和绝对空间,否定了同时性的绝对性。虽然宇宙时标和宇宙背景空间的概念并不是牛顿的绝对时间和绝对空间,相对于宇宙演化的同时性也不是牛顿意义的同时性的绝对性,但在概念的物理意义上毕竟有可以比拟之处。这表明,狭义相对论的时间、空间概念以及惯性运动和惯性系的概念,还有相对性原理本身,在宇观尺度上统统不再成立了。这样一来,对于这个宇宙背景空间上的局部引力现象的更精确的描述就应以宇宙学原理为基础,而不应当以广义相对论为基础。这意味着相对论在宇观尺度范围内必须从根本上加以改造。

爱因斯坦为了在相对性原理(意味着一切惯性系平权,没有优越的惯性系)和光速不变原理(指光速在“空虚空间”中不变)上建造他的狭义相对论,他就没有必要再保留以太概念。但是,空虚空间的概念毕竟是一个令人困惑的概念,爱因斯坦本人在建立广义相对论时,也认为空虚空间是不可思议的,为此他赋予空间以物质的内容,引入了所谓的“相对论以太”。但广义相对论并非狭义相对论的简单推广,所以狭义相对论中的“空虚空间”是一个幽灵。爱因斯坦后来想在统一场论中解决这个问题,但他的宿愿未能实现。1929年,狄喇克在解决相对论性电子理论产生的负能困难时,提出了一个基于新的真空图像的解决方案。原来,空虚空间即真空并非一无所有,而是所有的负能态都已填满,所有的正能态都未被占据的最低能态,它作为一种普通存在的背景并没有可观察效应。因此,真空不再是绝对的虚空,而是—种充满了物质实体的存在形式,这就给爱因斯坦的“相对论以太”描绘了一幅实在的图景。在某种意义上也可以说,这是古老的以太概念在新科学中获得了“新生”。比如,在现代场论中占有重要地位的真空自发破缺,就与这种“新以太”观念有着内在的联系,而当前对真空结构的研究就可以看作是对以太结构的研究。其实,李政道博士在研究“不寻常核态”的工作中,也发现空虚空间存在着真空物质。现在,人们已经认定,真空是一种物理实体,它能对其它物质发生影响;真空具有相对论不变性,在有的情况下,真空也系某种介质,当不满足某种不变性时,就形成真空自发破缺,从而使规范场粒子获得静止质量;处于真空状态的场仍保持持续不断的振荡,即所谓真空起伏,非阿贝尔规范场有一类特殊的叫作“瞬子”的真空物质。

广义相对论是物理学理论宝库中前所未有的珍品。这个理论以其概念的深刻、结构的严谨,内容的新颖和推论的精确而为人称道,但它之所以能轰动一时,主要还在于它解释了牛顿引力理论无法解释的水星近日点的剩余进动,并预言出不久经过实验证实的光线偏折和引力红移。50年代,有人改良了仪器设备,将厄缶实验的精度10-8提高到10-11,证明引力质量与惯性质量相等,近几年又有人将精度提高到10-12的数量极,这也是对等效原理的支持。由于采用穆斯堡尔效应,科学家在实验室中验证了引力红移。有人早已通过测量人造卫星中悬浮陀螺的进动,来验证广义相对论。70年代初,又有人通过测量对遥远行星的雷达回波的方式检验了广义相对论。70年代末,几家大天文台同时报道采用射电天文学的方法测量某些类星体发出的射电信号经过太阳的弯曲程度,大大提高了检验光线偏折的精度,对广义相对论提供了新的实验支持。

但是,广义相对论也面临着一些困难和亟待解决的问题。广义相对论一建立,爱因斯坦就企图用它来描述作为一个整体的宇宙大尺度的行为。从此以后,广义相对论和天文学密切结合,形成了相对论天体物理学的一个富有成果的领域——现代宇宙学。值得一提的是,现代宇宙学在60年代取得丁长足的进展,观察材料已经支持早期宇宙的大爆炸模型,发现了空间各向同性的微波背景辐射。在这里,尤为值得一提的是霍金(S.Hawking)等著名的相对论学者关于黑洞理论和大尺度时空结构的研究。

广义相对论的引力场在理论上存在着奇性,这种奇性具有十分奇特的性质,沿着短程线运动的粒子或光线会在奇性处“无中生有”或不知去向。按照广义相对论,演化到晚期的星体只要还有两三个太阳的质量,就会迟早变为黑洞,包括光线在内的任何物体都会被黑洞的强大引力吸到里面而消失得无影无踪。不仅如此,黑洞还要不断坍缩到时空奇性。时间停止了,空间成为一个点,一切物理定律,包括因果律都失去意义,一切物质状态都被撕得粉碎。此外,经典理论中的一个黑洞永远不能分裂为两个黑洞,只能是两个或两个以上的黑洞合为一个黑洞,其结果很可能是整个宇宙变为一个大黑洞,并且早晚要坍缩到奇性。寻找黑洞的观测工作也在稳步进展。1970年底,美国和意大利联合发射了载有X射线探测装置的卫星,这颗卫星工作到1974年,共探测到161个射线源,经筛选确认,天鹅座X-1最有希望是一个黑洞。另外,圆规座X-1与天鹅座X-1数据非常相似,也很有希望被证认为黑洞。现在,关于黑洞的理论的研究正在进展,观察结果还有待进—步证实。无论如何,广义相对论竟然要求这类难以接受的奇性,无疑是一个难题。或者广义相对论本身要修改,或者物理学的其他基本概念和原理要有重大变更。

大爆炸宇宙学的研究越来越追溯到更早期的宇宙。特别是80年代以来,根据大统一理论发展起来的暴涨宇宙学,开始研究宇宙年龄约为10-36秒或更早期的情况。当宇宙年龄小于10-36秒时,宇宙间不仅没有星球,没有化学元素,甚至连任何基本粒子也没有,有的只是时间、空间和物理的真空。继续追溯这种非常单纯、非常对称的状态,便会得出时空创生于无(当然也就是说宇宙创生于无)的结论。其实,空间和时间的非永恒性,在相对论和量子论中已有强烈的暗示。按照相对论,不同的运动观测者将测得不同的时间值。最有趣的例子就是双生子佯谬,它描述的是两个观察者开始在一起,最终又在一起,但由于中间的运动情况各不相同,则二者所测得的历时是不一样的。因此,原则上讲,要精确地测量时间,就必须精确地知道测量者的运动轨迹。然而,量子论中的测不准原理告诉我们,不可能精确地了解任何一个物体在时间中的运动轨迹,从而也就原则上否认了精确测定时间的可能性。这个精度的限制是
  lp~(hG/c3)1/2~10-33厘米,
  tp~(hG/c3)1/2~10-43秒,
  其中h是普朗克常数,G是万有引力常数,c是光速。lp和tp分别叫做普朗克长度和普朗克时间。它们的意义是:我们无法造出一种“尺”和“钟”,用来测定小于lp的长度和小于tp的时间。一个量在原则上不能测量,就不会有物理意义。这表明,在小于lp和tp的范围内,空间、时间概念就失效了。1983年以来,霍金就致力于发展一种宇宙的自足理论。1984年初,他和他的合作者得到了第一个完整的宇宙自足解。该理论的第一个要点是建立非时间的理论,这种新的“时”空,实际上是一种欧几里得空间,其中不再含有时间坐标。该理论的第二个要点是给出上述欧氏空间的创生幅度,即宇宙创生于无的幅度。霍金只就简单的情况作了计算,还不能看作是真实宇宙的解,而不过是玩具式的模型而已,但它无疑向人们提出了一个值得深思的问题:我们关于时空和宇宙的传统观念是否一贯正确?这当然是向现代物理学和哲学的挑战。

由以上有关描绘也可以看出,引力问题已处于一个充满矛盾的新时期。虽然广义相对论经过一些实验检验,与其他理论相比可以看作是描述宏观引力现象的一个较成功的理论,但它在处理某些极端条件下的问题(黑洞、引力坍缩、奇点、宇观优越坐标系、10-36秒之前的早期宇宙等)时,又表现出一定的局限性。因此,广义相对论也是人们认识发展过程中的相对真理,它也面临着亟待改革的形势。人们为了解决四种作用力的统一描述和引力领域内的各种矛盾问题,正在已有的理论上发展引力规范理论和超引力理论。

关于统一场论,爱因斯坦从1923年起直到1955年去世,一直从几何学的观点出发,企图把电磁场和引力场统一起来(几何统一场论),但是没有取得具有物理意义的成果。但是,在30年代和40年代,随着弱相互作用、强相互作用以及各种基本粒子的大量发现,统一场论又中兴起来。50年代,海森伯不是从几何学角度,而是从量子场论的角度出发,提出了一种量子统一场论,想用统一的自旋场把各种基本粒子和它们的相互作用都囊括进去,也没有获得决定性的成功。1954年,杨振宁和米尔斯为统一场论开辟了道路。他们推广了魏耳的规范不变思想,提出了扬-米尔斯场即非阿贝尔规范场理论。这种理论与拓扑学中的纤维丛概念有着密切的联系,它虽然在数学上很完美,但在描述各种相互作用时却遇到了困难。三年后,施温格建议一种可能导致弱电统一理论的矢量介子理论。到60年代,电磁场理论已由20年代的非量子化的相对论性电动力学发展成量子化的量子电动力学(QED),为统一场论的建立奠定丁理论基础。1961年,施温格的学生格拉肖发展了一种弱相互作用理论,它同电磁相互作用有惊人的相似之处,并采用四个生成元,即光子、W+、W-粒子和中性流矢量玻色子,也就是现在的Z0粒子的SU(2)XU(1)群。1967年,温伯格和萨拉姆分别独立地采用这四个生成元发展了一种弱、电统一理论。这种统一理论解决了杨-米尔斯理论的困难,它后来被称为量子味动力学(QED)。70年代以来,不仅弱、电统一理论得到了一些实验的支持,而且描述强相互作用的量子色动力学(QCD)的出现也为统一强相互作用提供了可能性。在量子色动力学中,强相互作用也是非阿贝尔规范场,它存在于强子之间和之中,它的场源是色荷,规范变换群是SU(3)群,其规范粒子是胶子,强相互作用是胶子同色荷相耦合而成的。这样,弱、电、强三种相互作用的表现形式是一样的,它们都是规范场。在这个基础上,美国物理学家格拉肖和乔奇等人通过选择新的规范群SU(3),建立起统一描述弱、电,强三种相互作用的大统一理论。至此,人们自然希望把引力相互作用也用规范场统一起来。爱因斯坦在世时就知道引力相互作用也是一种规范场,现在的问题在于不了解引力相互作用与其他三种相互作用如何发生联系。尽管引力场的量子化问题已经取得实质性的进展,然而广义相对论的引力论却在量子化以后可否重正的问题上遇到了难以克服的障碍。有人虽则在广义相对论的基础上加进了含场量高阶微商的新的作用量,得到了可以重整化的量子引力理论,但这又破坏了保证几率守恒的幺正性,在物理上也是不能成立的。关于四种相互作用的统一,另一类工作是超对称、超引力理论,这是近年苏联、美国和西欧一些学者致力研究的课题,并相继提出了几种理论,但在理论上还存在不少困难,在学术界争议也很大。不过,令人欣慰的是,西欧核子研究中心庞大的超同步质子加速器让正反质子对撞并湮没,在1983年1月首次报道产生了W+和W-粒子,6月又报道发现了Z0粒子,这是20世纪物理学的最重大事件之一。这三种传播弱相互作用的粒子是温伯格-萨拉姆理论所预言的,它们的产生给弱电统一理论以决定性的支持。就在同一年,丁肇中小组三喷注事例的发现,证实了胶子的存在,从而有力地支持了量子色动力学和格拉肖、乔奇等人的大统一理论。人们可望在四种相互作用的统一方面取得突破,这将对物理学产生举足轻重的影响。

快子 - 快子与时空
Sen的关于D膜上的快子的研究告诉我们快子在理解D膜湮灭或者消失方面有重要的作用。

26维玻色弦论中有快子,过去一直认为,如果快子凝聚了,26维时空可能变成低维时空。这个想法在Adams, Polchinksi, Silverstein(hep-th/0108075)的研究中得到证实,他们研究的是闭弦中可以局域化的快子,所以比较容易研究。最近,Silverstein等人将这个研究推广到研究类空奇点,以为快子的凝聚使得类空奇点消失。

更为新近的文章是Berkooz等人的(hep-th/0507067),他们声称ull orbifold上的快子凝聚导致正常的orbifold。我觉得他们文章中的D(-1)膜的研究比较接近于最近Verlinde等人研究的matrix model。也许在不远的将来,所有这些研究会产生一个共同的突破。

快子 - 快子与因果性
为了用一个超光信号确定一个果先于一个因的可能,最简单的方法是考虑一个空间维度的闵可夫斯基图。

我们考虑两个以相对速度VC,向右运动的信号(标记为Ⅰ),在时刻t1>t0(在S系中被测量)到达在S′系中静止的B点。这个信号在B点,立即激发一个信号,在t′时刻以V′>C的速度向左传播(标记为2)t2′>t1′时刻达到A点(在S′系中测量)。然而,在S系中测量这个时刻t2,比t0要早。很显然,通过增大A和B之间的距离,t0-t2能被做得象希望的一样大。进一步讲在B点不需要观察者;第一个信号的接收和第二个信号的发射能够用一个机构来完成。因而为了避免因果反常,我们必须不允许在A点的实验者发送一个速度V>C宏观信号的可能性。

关于信号,Tertetskii[1]指出被相对论排除的不是以比C大的速度运动的粒子(快子)的存在,而是禁止这样一个过程,在这个过程中这样粒子的发射被有计划地重复而且和那辐射体的熵增加相联系,这是信息传输的必要条件。

尽管这样,还有一些学者提出:“快子”可能存在而且可能由实验产生。他们的努力主要是重新解释快子1和2的世界线。当世界线1进入S系中的未来,从S′和S观察时,世界线1和世界线2各自进入过去(而有负能量,一个不能被讨论的点)。通过“开关原理”,描述具有正能量和进入未来的世界线是可能的。总而言之,已被令人信服地表明的是如果我们只观察快子的世界线,可以用不违反逻辑或“因果性”的方式描述这些世界线。但是已经取得的仅仅是闭合系统形成部分的快子的一致描述;违反因果性的问题只能在开放系统产生,这不是描述的问题而是自我矛盾现象。虽然有一些文章反对快子拥护者提出的观点,但是上述差别没有得到充分强调。在闭合系里,快子的存在可以和相对论的因果性要求一致。然而,有目的产物没有达到可重复和引起宏观效应适合作信号的程度。如果它不被重复,即产物完全是随机的,它不依赖检验者的意图,那么它不适合作信号。回避宏观效应,不足以排除宏观快子束产生的可能性。人们也必须排除由快子引发其它宏观现象的可能性(除了完全随机的方式以外)。这些限制排除了设计有关快子实验的可能性,而且只允许偶然的观察。因而相对论对开放系统力学允许的过程施加了严格的限制。

上一篇:天体力学 下一篇:哥本哈根诠释 将此篇文章设为精华文章超高速的快子
2012-04-30 本文行家:宇宙与道
   
20世纪60年代以来,有人提出了超光速粒子的新课题,他们称这种粒子为“快子’。超光速理论工作一般从狭义相对论出发,将其推广,求得既适合于慢子(低于光速的粒子)和光子,又适合于快子的相对论理论。据理论上的推测,快子具有奇异的物理性质。它的质量是虚数,它的速度将随能量的耗散而无限增加,当它的能量趋于零时,则速度趋于无穷大。

目录
快子 - 概念
快子 - 性质
快子 - 快子的提出
快子 - 研究发展
快子 - 快子与时空
快子 - 快子与因果性

快子 - 概念
快子(tachyon):也被称为迅子、速子,是一个理论上预见的超光速粒子。从相对论衍生出的假想粒子,总是以高于光速c的速度在宇宙运行。与一般物质称为(慢子(tardyon))的相互作用可能性不明显,所以即使其存在也不一定能侦测得到。

快子 - 性质
超光速理论工作一般从狭义相对论出发,将其推广,求得既适合于慢子(低于光速的粒子)和光子,又适合于快子的相对论理论。据理论上的推测,快子具有奇异的物理性质。它的质量是虚数,它的速度将随能量的耗散而无限增加,当它的能量趋于零时,则速度趋于无穷大。快子一旦产生,就具有大于光速的速度。要使它的速度减小,必须供给它能量。如要减小到光速,则必须供给它无限大的能量才行,因此其速度不可能减小到光速或低于光速。快子的负能问题是一个复杂的问题。由于负能量的出现,将意味着任何一个物理系统,因为可能无限地释放快子而处于不稳定状态,系统将无限地增加自己的能量,从而导致永动机的出现。而且,更为使人惊异的是,即使无限地产生快子对,也不会破坏能量动量守恒定律,同时也不会改变真空中的总能量。另外,根据洛伦兹变换,快子从一个坐标系转换到另一个坐标系的过程中,可能改变时间的顺序,即时间倒流。这样一来,也许就要出现像打油诗“年青女郎名葆蕾,神行有术光难追,快子理论来指点,今日出游昨夜归”所描绘的“奇迹”。这两个困难问题虽然可以借助二次说明原理(即应该将一个具有负能量的粒子看作是先被吸收,然后再发射,这样一来,负能量与时间倒流和正能量与时间顺流的物理意义完全一样,因而变换坐标系后物理定律依然不变)来解释,但它并没有解决不变的因果律的问题。另外,快子有可能以无限大的速度传播,因而假若存在着快子,就可能瞬时传递作用信息,似乎又可能回到“超距作用”论的概念上去。不过,近10多年来,虽说在理论方面和实验方面都作了不少的工作,但至今尚未取得重大突破。要使快子理论与现代物理学理论协调起来,还需要克服相当多的困难。不过,这却有可能迫使人们跳出目前的理论框架,克服早已习惯了的观念,从而产生巨大而深远的影响。

电磁性质包括

四维波数与亚光速变换一样,仍用相位不变性来定义四维波数:因此四维波数在超光速坐标变换下是虚鹰矢。

电荷与电荷密度我们认定物体总荷电量与坐标系无关。由于运动方向的尺度发生变化,(超光速下不是尺缩而是尺胀),电荷密度p与荷电体的三维速度有关,因而也与坐标系有关。考虑到超光速粒子(快子)的电荷与电磁场与亚光速粒子的电荷及电磁场性质应该相同,因此不论‘快子’与‘慢子’,电荷密度p的表达式应该同一。

电流密度对于任意惯性系,定义四维电流密度现在考虑J的变换性质。基于与讨论P时的同样理由,我们认定J,经超光速变换后其前三个分量即实际三维电流密度保持实值,第四分量保持纯虚位,这与亚光速变换相同。

快子 - 快子的提出
爱因斯坦在1922年就光速不变原理写道:“相对论常遭指责,说它未加论证就把光的传播放在中心理论的地位,以光的传播定律作为时间概念的基础。然而情形大致如下:为丁赋予时间概念以物理意义,需要某种能建立不同地点之间的关系的过程。为这样的时间定义,究竟选择哪一种过程是无关重要的。可是为了理论只选用那种已有某些肯定解的过程是有好处的。由于麦克斯韦与洛伦兹的研究之赐,和任何其他考虑的过程相比,我们对于光在真空中的传播是了解得更清楚的。”

事隔60余年,这种状况并没有得到改变。在爱因斯坦提出光速不变原理时,已有的实验只是说明在闭合回路中平均光速的不变性,而不是光速不变原理本身。能不能找到更为基本的对钟手段,或者通过其他途径,来检验光速不变所包含的假定,是有待于科学实验进一步发展来解答的基本问题。因为光速不变原理是现代物理学的柱石之一,解决这个问题难度较大,影响深远,结果到底如何,人们将拭目以待。

20世纪60年代以来,有人提出了超光速粒子的新课题,他们称这种粒子为“快子”。超光速理论工作一般从狭义相对论出发,将其推广,求得既适合于慢子(低于光速的粒子)和光子,又适合于快子的相对论理论。

快子 - 研究发展
20世纪20年代量子力学建立以后,狭义和广义相对论与量子理论相结合,一直是理论物理学发展的坚实基础。半个世纪以来,这种结合不断发展和深化,也不断接受科学实验的检验。一方面,实验事实充分证明相对论和量子力学在其有效范围内是可靠的理论;另一方面,实验研究和理论进展表明,它们也遇到了一些难以解决的反常问题,其中一些问题是带有根本性的和革命性的,似乎难以容纳在相对论和量子力学的框架内。因此,在相对论和量子力学还处于兴盛时期的今天,汲取这些理论的真理性的内容,克服它们所面临的疑难,进一步探索自然界的奥秘,就已经提到当代物理学家的议事日程上来了。在这里,我们拟就当代物理学的现状和革命趋势,简要地作一点不甚全面的述评。

狭义相对论诞生以后,人们就一直设法做实验来验证它。1958年,有人改进了迈克耳孙-莫雷实验,得到了“以太风”小于地球轨道速度的1/1000的结论。后来利用穆斯堡尔效应,测得“以太风”的速度为1.6±2.8米/ 秒,远远小于期望值(30公里/秒)。这既是对狭义相对论的验证,也证明根本不存在19世纪的作为电磁场载体的以太。尤其明显的是,从宇宙线的探测到高能加速器以及对撞机的应用,几乎高能物理实验的各个方面都要涉及狭义相对论效应,可是随着加速能量的不断提高,现在已经确认在小到约为一个质子半径百分之一的距离内,没有观测到狭义相对论的破坏。有人进行了静止光子质量的实验及光速测定的实验,还有人进行了大量有关运动介质的电动力学实验和直接检验尺缩钟慢的相对论效应实验,甚至有人用高速喷气飞机上的原子钟验证运动时钟变慢的效应。所有这些实验都表明,无论在微观尺度还是在宏观尺度,还没有发现狭义相对论有破坏的迹象。

但是,这一切并不意味着狭义相对论就毋庸置疑了,就没有进一步探讨的必要了。情况完全不是这样。尽管狭义相对论的具体结论得到了实验验证,但是只要它的两个逻辑前提——相对性原理和光速不变原理——未有确凿的实验证据,它们就仍然带有假设成分和“先验”性质。爱因斯坦在提出这两条原理时也是意识到这一点的。例如,他在1922年就光速不变原理写道:“相对论常遭指责,说它未加论证就把光的传播放在中心理论的地位,以光的传播定律作为时间概念的基础。然而情形大致如下:为丁赋予时间概念以物理意义,需要某种能建立不同地点之间的关系的过程。为这样的时间定义,究竟选择哪一种过程是无关重要的。可是为了理论只选用那种已有某些肯定解的过程是有好处的。由于麦克斯韦与洛伦兹的研究之赐,和任何其他考虑的过程相比,我们对于光在真空中的传播是了解得更清楚的。”

事隔60余年,这种状况并没有得到改变。在爱因斯坦提出光速不变原理时,已有的实验只是说明在闭合回路中平均光速的不变性,而不是光速不变原理本身。能不能找到更为基本的对钟手段,或者通过其他途径,来检验光速不变所包含的假定,是有待于科学实验进一步发展来解答的基本问题。因为光速不变原理是现代物理学的柱石之一,解决这个问题难度较大,影响深远,结果到底如何,人们将拭目以待。

60年代以来,有人提出了超光速粒子的新课题,他们称这种粒子为“快子”。超光速理论工作一般从狭义相对论出发,将其推广,求得既适合于慢子(低于光速的粒子)和光子,又适合于快子的相对论理论。据理论上的推测,快子具有奇异的物理性质。它的质量是虚数,它的速度将随能量的耗散而无限增加,当它的能量趋于零时,则速度趋于无穷大。快子一旦产生,就具有大于光速的速度。要使它的速度减小,必须供给它能量。如要减小到光速,则必须供给它无限大的能量才行,因此其速度不可能减小到光速或低于光速。快子的负能问题是一个复杂的问题。由于负能量的出现,将意味着任何一个物理系统,因为可能无限地释放快子而处于不稳定状态,系统将无限地增加自己的能量,从而导致永动机的出现。而且,更为使人惊异的是,即使无限地产生快子对,也不会破坏能量动量守恒定律,同时也不会改变真空中的总能量。另外,根据洛伦兹变换,快子从一个坐标系转换到另一个坐标系的过程中,可能改变时间的顺序,即时间倒流。这样一来,也许就要出现像打油诗“年青女郎名葆蕾,神行有术光难追,快子理论来指点,今日出游昨夜归”所描绘的“奇迹”。这两个困难问题虽然可以借助二次说明原理(即应该将一个具有负能量的粒子看作是先被吸收,然后再发射,这样一来,负能量与时间倒流和正能量与时间顺流的物理意义完全一样,因而变换坐标系后物理定律依然不变)来解释,但它并没有解决不变的因果律的问题。另外,快子有可能以无限大的速度传播,因而假若存在着快子,就可能瞬时传递作用信息,似乎又可能回到“超距作用”论的概念上去。不过,近10多年来,虽说在理论方面和实验方面都作了不少的工作,但至今尚未取得重大突破。要使快子理论与现代物理学理论协调起来,还需要克服相当多的困难。不过,这却有可能迫使人们跳出目前的理论框架,克服早已习惯了的观念,从而产生巨大而深远的影响。

相对性原理是狭义相对论的另一个基本原理,它认为一切惯性系彼此等价,没有任何实验能确定那个更为优越。但是,作为现代宇宙学两个理论基础之一的哥白尼原理(另一个是广义相对论)却要求,存在着描述宇宙演化的宇宙时标和宇宙空间的标准坐标,典型星系或星系团在其中的分布是均匀各向同性的。宇宙背景辐射和各向同性的发现等大量观察资料都支持把哥白尼原理作为描述宇宙大尺度行为的基本原理。于是,宇宙时标就是相对优越的时标,它描述着宇宙的演化,而相对于这个时标的同时性在宇宙演化上具有本质的意义。典型星系或星系团均匀各向同性的空间就是宇宙背景空间,它相当于一个优越的坐标系。可以推知,若在相对于该坐标系以某一速度运动的参照系上观测星系,就会发现它们的分布不是均匀各向同性的,因此原则上就有可能测出运动坐标系相对于优越背景空间的速度。现在,已有人测出地球相对于各向同性背景辐射(优越的背景空间)的速度为每秒数百公里,这和地球相对于典型星系或星系团的速度是基本一致的。众所周知,作为整个相对论物理学根基的狭义相对论,恰恰否定了牛顿的绝对时间和绝对空间,否定了同时性的绝对性。虽然宇宙时标和宇宙背景空间的概念并不是牛顿的绝对时间和绝对空间,相对于宇宙演化的同时性也不是牛顿意义的同时性的绝对性,但在概念的物理意义上毕竟有可以比拟之处。这表明,狭义相对论的时间、空间概念以及惯性运动和惯性系的概念,还有相对性原理本身,在宇观尺度上统统不再成立了。这样一来,对于这个宇宙背景空间上的局部引力现象的更精确的描述就应以宇宙学原理为基础,而不应当以广义相对论为基础。这意味着相对论在宇观尺度范围内必须从根本上加以改造。

爱因斯坦为了在相对性原理(意味着一切惯性系平权,没有优越的惯性系)和光速不变原理(指光速在“空虚空间”中不变)上建造他的狭义相对论,他就没有必要再保留以太概念。但是,空虚空间的概念毕竟是一个令人困惑的概念,爱因斯坦本人在建立广义相对论时,也认为空虚空间是不可思议的,为此他赋予空间以物质的内容,引入了所谓的“相对论以太”。但广义相对论并非狭义相对论的简单推广,所以狭义相对论中的“空虚空间”是一个幽灵。爱因斯坦后来想在统一场论中解决这个问题,但他的宿愿未能实现。1929年,狄喇克在解决相对论性电子理论产生的负能困难时,提出了一个基于新的真空图像的解决方案。原来,空虚空间即真空并非一无所有,而是所有的负能态都已填满,所有的正能态都未被占据的最低能态,它作为一种普通存在的背景并没有可观察效应。因此,真空不再是绝对的虚空,而是—种充满了物质实体的存在形式,这就给爱因斯坦的“相对论以太”描绘了一幅实在的图景。在某种意义上也可以说,这是古老的以太概念在新科学中获得了“新生”。比如,在现代场论中占有重要地位的真空自发破缺,就与这种“新以太”观念有着内在的联系,而当前对真空结构的研究就可以看作是对以太结构的研究。其实,李政道博士在研究“不寻常核态”的工作中,也发现空虚空间存在着真空物质。现在,人们已经认定,真空是一种物理实体,它能对其它物质发生影响;真空具有相对论不变性,在有的情况下,真空也系某种介质,当不满足某种不变性时,就形成真空自发破缺,从而使规范场粒子获得静止质量;处于真空状态的场仍保持持续不断的振荡,即所谓真空起伏,非阿贝尔规范场有一类特殊的叫作“瞬子”的真空物质。

广义相对论是物理学理论宝库中前所未有的珍品。这个理论以其概念的深刻、结构的严谨,内容的新颖和推论的精确而为人称道,但它之所以能轰动一时,主要还在于它解释了牛顿引力理论无法解释的水星近日点的剩余进动,并预言出不久经过实验证实的光线偏折和引力红移。50年代,有人改良了仪器设备,将厄缶实验的精度10-8提高到10-11,证明引力质量与惯性质量相等,近几年又有人将精度提高到10-12的数量极,这也是对等效原理的支持。由于采用穆斯堡尔效应,科学家在实验室中验证了引力红移。有人早已通过测量人造卫星中悬浮陀螺的进动,来验证广义相对论。70年代初,又有人通过测量对遥远行星的雷达回波的方式检验了广义相对论。70年代末,几家大天文台同时报道采用射电天文学的方法测量某些类星体发出的射电信号经过太阳的弯曲程度,大大提高了检验光线偏折的精度,对广义相对论提供了新的实验支持。

但是,广义相对论也面临着一些困难和亟待解决的问题。广义相对论一建立,爱因斯坦就企图用它来描述作为一个整体的宇宙大尺度的行为。从此以后,广义相对论和天文学密切结合,形成了相对论天体物理学的一个富有成果的领域——现代宇宙学。值得一提的是,现代宇宙学在60年代取得丁长足的进展,观察材料已经支持早期宇宙的大爆炸模型,发现了空间各向同性的微波背景辐射。在这里,尤为值得一提的是霍金(S.Hawking)等著名的相对论学者关于黑洞理论和大尺度时空结构的研究。

广义相对论的引力场在理论上存在着奇性,这种奇性具有十分奇特的性质,沿着短程线运动的粒子或光线会在奇性处“无中生有”或不知去向。按照广义相对论,演化到晚期的星体只要还有两三个太阳的质量,就会迟早变为黑洞,包括光线在内的任何物体都会被黑洞的强大引力吸到里面而消失得无影无踪。不仅如此,黑洞还要不断坍缩到时空奇性。时间停止了,空间成为一个点,一切物理定律,包括因果律都失去意义,一切物质状态都被撕得粉碎。此外,经典理论中的一个黑洞永远不能分裂为两个黑洞,只能是两个或两个以上的黑洞合为一个黑洞,其结果很可能是整个宇宙变为一个大黑洞,并且早晚要坍缩到奇性。寻找黑洞的观测工作也在稳步进展。1970年底,美国和意大利联合发射了载有X射线探测装置的卫星,这颗卫星工作到1974年,共探测到161个射线源,经筛选确认,天鹅座X-1最有希望是一个黑洞。另外,圆规座X-1与天鹅座X-1数据非常相似,也很有希望被证认为黑洞。现在,关于黑洞的理论的研究正在进展,观察结果还有待进—步证实。无论如何,广义相对论竟然要求这类难以接受的奇性,无疑是一个难题。或者广义相对论本身要修改,或者物理学的其他基本概念和原理要有重大变更。

大爆炸宇宙学的研究越来越追溯到更早期的宇宙。特别是80年代以来,根据大统一理论发展起来的暴涨宇宙学,开始研究宇宙年龄约为10-36秒或更早期的情况。当宇宙年龄小于10-36秒时,宇宙间不仅没有星球,没有化学元素,甚至连任何基本粒子也没有,有的只是时间、空间和物理的真空。继续追溯这种非常单纯、非常对称的状态,便会得出时空创生于无(当然也就是说宇宙创生于无)的结论。其实,空间和时间的非永恒性,在相对论和量子论中已有强烈的暗示。按照相对论,不同的运动观测者将测得不同的时间值。最有趣的例子就是双生子佯谬,它描述的是两个观察者开始在一起,最终又在一起,但由于中间的运动情况各不相同,则二者所测得的历时是不一样的。因此,原则上讲,要精确地测量时间,就必须精确地知道测量者的运动轨迹。然而,量子论中的测不准原理告诉我们,不可能精确地了解任何一个物体在时间中的运动轨迹,从而也就原则上否认了精确测定时间的可能性。这个精度的限制是
  lp~(hG/c3)1/2~10-33厘米,
  tp~(hG/c3)1/2~10-43秒,
  其中h是普朗克常数,G是万有引力常数,c是光速。lp和tp分别叫做普朗克长度和普朗克时间。它们的意义是:我们无法造出一种“尺”和“钟”,用来测定小于lp的长度和小于tp的时间。一个量在原则上不能测量,就不会有物理意义。这表明,在小于lp和tp的范围内,空间、时间概念就失效了。1983年以来,霍金就致力于发展一种宇宙的自足理论。1984年初,他和他的合作者得到了第一个完整的宇宙自足解。该理论的第一个要点是建立非时间的理论,这种新的“时”空,实际上是一种欧几里得空间,其中不再含有时间坐标。该理论的第二个要点是给出上述欧氏空间的创生幅度,即宇宙创生于无的幅度。霍金只就简单的情况作了计算,还不能看作是真实宇宙的解,而不过是玩具式的模型而已,但它无疑向人们提出了一个值得深思的问题:我们关于时空和宇宙的传统观念是否一贯正确?这当然是向现代物理学和哲学的挑战。

由以上有关描绘也可以看出,引力问题已处于一个充满矛盾的新时期。虽然广义相对论经过一些实验检验,与其他理论相比可以看作是描述宏观引力现象的一个较成功的理论,但它在处理某些极端条件下的问题(黑洞、引力坍缩、奇点、宇观优越坐标系、10-36秒之前的早期宇宙等)时,又表现出一定的局限性。因此,广义相对论也是人们认识发展过程中的相对真理,它也面临着亟待改革的形势。人们为了解决四种作用力的统一描述和引力领域内的各种矛盾问题,正在已有的理论上发展引力规范理论和超引力理论。

关于统一场论,爱因斯坦从1923年起直到1955年去世,一直从几何学的观点出发,企图把电磁场和引力场统一起来(几何统一场论),但是没有取得具有物理意义的成果。但是,在30年代和40年代,随着弱相互作用、强相互作用以及各种基本粒子的大量发现,统一场论又中兴起来。50年代,海森伯不是从几何学角度,而是从量子场论的角度出发,提出了一种量子统一场论,想用统一的自旋场把各种基本粒子和它们的相互作用都囊括进去,也没有获得决定性的成功。1954年,杨振宁和米尔斯为统一场论开辟了道路。他们推广了魏耳的规范不变思想,提出了扬-米尔斯场即非阿贝尔规范场理论。这种理论与拓扑学中的纤维丛概念有着密切的联系,它虽然在数学上很完美,但在描述各种相互作用时却遇到了困难。三年后,施温格建议一种可能导致弱电统一理论的矢量介子理论。到60年代,电磁场理论已由20年代的非量子化的相对论性电动力学发展成量子化的量子电动力学(QED),为统一场论的建立奠定丁理论基础。1961年,施温格的学生格拉肖发展了一种弱相互作用理论,它同电磁相互作用有惊人的相似之处,并采用四个生成元,即光子、W+、W-粒子和中性流矢量玻色子,也就是现在的Z0粒子的SU(2)XU(1)群。1967年,温伯格和萨拉姆分别独立地采用这四个生成元发展了一种弱、电统一理论。这种统一理论解决了杨-米尔斯理论的困难,它后来被称为量子味动力学(QED)。70年代以来,不仅弱、电统一理论得到了一些实验的支持,而且描述强相互作用的量子色动力学(QCD)的出现也为统一强相互作用提供了可能性。在量子色动力学中,强相互作用也是非阿贝尔规范场,它存在于强子之间和之中,它的场源是色荷,规范变换群是SU(3)群,其规范粒子是胶子,强相互作用是胶子同色荷相耦合而成的。这样,弱、电、强三种相互作用的表现形式是一样的,它们都是规范场。在这个基础上,美国物理学家格拉肖和乔奇等人通过选择新的规范群SU(3),建立起统一描述弱、电,强三种相互作用的大统一理论。至此,人们自然希望把引力相互作用也用规范场统一起来。爱因斯坦在世时就知道引力相互作用也是一种规范场,现在的问题在于不了解引力相互作用与其他三种相互作用如何发生联系。尽管引力场的量子化问题已经取得实质性的进展,然而广义相对论的引力论却在量子化以后可否重正的问题上遇到了难以克服的障碍。有人虽则在广义相对论的基础上加进了含场量高阶微商的新的作用量,得到了可以重整化的量子引力理论,但这又破坏了保证几率守恒的幺正性,在物理上也是不能成立的。关于四种相互作用的统一,另一类工作是超对称、超引力理论,这是近年苏联、美国和西欧一些学者致力研究的课题,并相继提出了几种理论,但在理论上还存在不少困难,在学术界争议也很大。不过,令人欣慰的是,西欧核子研究中心庞大的超同步质子加速器让正反质子对撞并湮没,在1983年1月首次报道产生了W+和W-粒子,6月又报道发现了Z0粒子,这是20世纪物理学的最重大事件之一。这三种传播弱相互作用的粒子是温伯格-萨拉姆理论所预言的,它们的产生给弱电统一理论以决定性的支持。就在同一年,丁肇中小组三喷注事例的发现,证实了胶子的存在,从而有力地支持了量子色动力学和格拉肖、乔奇等人的大统一理论。人们可望在四种相互作用的统一方面取得突破,这将对物理学产生举足轻重的影响。

快子 - 快子与时空
Sen的关于D膜上的快子的研究告诉我们快子在理解D膜湮灭或者消失方面有重要的作用。

26维玻色弦论中有快子,过去一直认为,如果快子凝聚了,26维时空可能变成低维时空。这个想法在Adams, Polchinksi, Silverstein(hep-th/0108075)的研究中得到证实,他们研究的是闭弦中可以局域化的快子,所以比较容易研究。最近,Silverstein等人将这个研究推广到研究类空奇点,以为快子的凝聚使得类空奇点消失。

更为新近的文章是Berkooz等人的(hep-th/0507067),他们声称ull orbifold上的快子凝聚导致正常的orbifold。我觉得他们文章中的D(-1)膜的研究比较接近于最近Verlinde等人研究的matrix model。也许在不远的将来,所有这些研究会产生一个共同的突破。

快子 - 快子与因果性
为了用一个超光信号确定一个果先于一个因的可能,最简单的方法是考虑一个空间维度的闵可夫斯基图。

我们考虑两个以相对速度VC,向右运动的信号(标记为Ⅰ),在时刻t1>t0(在S系中被测量)到达在S′系中静止的B点。这个信号在B点,立即激发一个信号,在t′时刻以V′>C的速度向左传播(标记为2)t2′>t1′时刻达到A点(在S′系中测量)。然而,在S系中测量这个时刻t2,比t0要早。很显然,通过增大A和B之间的距离,t0-t2能被做得象希望的一样大。进一步讲在B点不需要观察者;第一个信号的接收和第二个信号的发射能够用一个机构来完成。因而为了避免因果反常,我们必须不允许在A点的实验者发送一个速度V>C宏观信号的可能性。

关于信号,Tertetskii[1]指出被相对论排除的不是以比C大的速度运动的粒子(快子)的存在,而是禁止这样一个过程,在这个过程中这样粒子的发射被有计划地重复而且和那辐射体的熵增加相联系,这是信息传输的必要条件。

尽管这样,还有一些学者提出:“快子”可能存在而且可能由实验产生。他们的努力主要是重新解释快子1和2的世界线。当世界线1进入S系中的未来,从S′和S观察时,世界线1和世界线2各自进入过去(而有负能量,一个不能被讨论的点)。通过“开关原理”,描述具有正能量和进入未来的世界线是可能的。总而言之,已被令人信服地表明的是如果我们只观察快子的世界线,可以用不违反逻辑或“因果性”的方式描述这些世界线。但是已经取得的仅仅是闭合系统形成部分的快子的一致描述;违反因果性的问题只能在开放系统产生,这不是描述的问题而是自我矛盾现象。虽然有一些文章反对快子拥护者提出的观点,但是上述差别没有得到充分强调。在闭合系里,快子的存在可以和相对论的因果性要求一致。然而,有目的产物没有达到可重复和引起宏观效应适合作信号的程度。如果它不被重复,即产物完全是随机的,它不依赖检验者的意图,那么它不适合作信号。回避宏观效应,不足以排除宏观快子束产生的可能性。人们也必须排除由快子引发其它宏观现象的可能性(除了完全随机的方式以外)。这些限制排除了设计有关快子实验的可能性,而且只允许偶然的观察。因而相对论对开放系统力学允许的过程施加了严格的限制。

上一篇:天体力学 下一篇:哥本哈根诠释 将此篇文章设为精华文章
补原文链接上来,发不了的化去掉“http://”再发。
快子是由弦理论预测出来的,若被引入量子场论,会导致很多古怪的结果。不过后来的由超弦理论(超对称和弦理论)给否决掉了。
ht tp://frank6lidaoyuan.baike.com/article-296290.html
可以先将因果律放到一边
光速不是速度的极限,核能也不是能源的极限。