技术帖 Su-27 终极版 SV-51

来源:百度文库 编辑:超级军网 时间:2024/04/27 20:08:09


SV 51  
反统合联盟的变形战斗机,其设计比VF-0系列早,机体也比VF-0大。虽然与VF-0系列同为先期试生产型,但具有较高的完成度。
由于俄国Sukhoi设计局人员参与了设计,SV-51继承了Sukhoi系列战斗机的高机动性的特点。   
类别 先期试生产可变形战斗机   
设计制造 苏霍伊设计局(Sukhoi)/以色列航空工业(Israel Aircraft Industry)/道尼尔(Dornier)   
机体尺寸 全长:22.77米   
主发动机 アビアドガテル(Aviadvigatel)D-30F6X涡轮风扇喷气发动机2台                 
推力:10,459.2 kg x2     (102.5 kN x2)油门全开   20,887.8 kg x2     (204.7 kN x2)使用后燃器加力  
辅助发动机   VTOL用升力风扇2台   
机体空重   17800公斤   
机体性能 最大速度   
2.81马赫(11000米高度)   
使用升限   22500米   
续航距离   1910公里   
武器系统 固定武器   Gsh-231 12.7mm Minigun x2   
标准武器   Gsh-371 55mm Gun Pod:弹夹外置,可更换(备弹120发)   
复合荚舱(POD)   挂载在两翼翼尖的大型荚舱(POD),内设微型导弹发射器和辅助油箱.每具能够搭载兹洛波夫SA-19M微型导弹18枚   
追加武器   6个外挂点可以挂载大多数符合华约标准的外挂武器.   
防御装备    SPO-15C三百六十度被动雷达警戒系统      
RP-51 主动隐形系统       
SWAG能源转换装甲   
APP-60型铂条/曳光干扰弹发射器   






翼面设计



   SV-51之所以选择三翼面布局,一是因为苏霍伊设计局从SU-35和SU-47中积累了大量经验,二是延续了以前的设计思想--强调机动性。从SU-47最初立项中可以就看出由于过于强调格斗能力而被空军“另眼相看”。三翼面飞机在许多方面都超过了传统的二翼面飞机。比如美国在“飞机精确控制技术”(PACT)项目中发现,F-4 PACT验证机不需要依赖大的静不稳定度就可得到机动性很大的提高,特别是在M=0.90时单位剩余功率提高量比较大,而这正是飞机作急剧机动格斗常用的M数区。F-15S/MTD验证机表明,鸭面使气动中心前移,增大飞机静不稳定,提高了主动控制系统(ACT)的效能,比二翼面布局容易实现直接力控制,从而达到对飞行轨迹的精确控制。而且升力线斜率加大,特别是大迎角时升力有明显增大。鸭面控制机翼气流分离的有利干扰在三翼面布局上依然存在,进行大迎角机动时失速迎角推迟,出现难以改出的深失速的可能性减小,减少了诱导阻力。鸭翼还提高了机动性和改善了襟翼、平尾以及垂尾舵面的操纵效率。在进行相同过载机动时,机翼载荷比二翼面布局小,全机载荷分配更均匀合理,因而可以减轻结构重量。比如进行法向过载为7g的机动时,二翼面布局的F-15机翼要承受6.9g过载,平尾为O.1g,而三翼面的F-15S/MTD机翼承受过载减小到5.2g,鸭面和平尾各承受0.9g,从而可以拉出更高的过载。而SU-35在不用加强机体结构强度的情况下稳定过载就达到了10g。在超音速时,三翼面飞机的静稳定度也比二翼面飞机小,使得配平阻力减小,机动性能力提高。如果在设计开始就考虑三翼面布局可以得到一架更轻的飞机,更充分发挥这种布局的优点。基于三翼面布局可以大幅度提高机动性的优点,加上之前的经验,苏霍伊为SV-51选择这种布局也就不足为奇了。


   但是三翼面布局的鸭面有利干扰在迎角增大到一定程度时,涡流会发生破裂,导致稳定性和操纵性发生突然变化,以及气动力非线性的产生(F-15ACTIVE的横向稳定性在迎角达到30°时就发生了稳定→不稳定→稳定的大幅度变化)。由于鸭面及其偏度对大迎角的稳定性和操纵性的影响在不同迎角和侧滑角时可能是相反的,在设计中要进行周密分析和详尽的试验。另外三翼面布局在小迎角时的阻力比二翼面布局大,超音速状态下更明显。由于增加了一个升力面和相应的操纵系统,重量自然增大,对飞控软件的编写也复杂许多。为了解决这些问题,苏霍伊设计局将鸭翼设计成前掠。我们知道飞行时后掠翼的气流是由翼根流向翼尖,大后掠角的鸭翼就是通过翼尖产生脱体涡对主翼的有利干扰从而达到增升目的。而将鸭翼改为前掠,气流就从翼尖流向翼根,以上种种优点和缺点就不存在了。这样鸭翼就只是作为一个独立的舵面,不会对主翼产生各种干扰。而主翼后掠角较小,展弦比大,加上其它辅助设计,即使没有鸭翼的有利干扰依然可以有较高的升力系数。选择前掠鸭翼的另一个原因可能是时间关系--纷乱的战争已经没有什么时间让苏霍伊好好研究试验鸭翼涡流和主翼之间的关系了。



   鸭翼布置在驾驶舱后,带有45°的上反角,鸭翼上反可以提高直接力控制效果,但降低了横向稳定性。翼尖前缘有雷达告警接收机(RWR)。鸭翼距离机翼较远,有较高的升阻比,提供的操纵力矩也大,加上前掠翼比后掠翼升力大,就可以减小鸭翼面积(大鸭翼很难满足跨音速面积律的要求,也增大了超音速阻力),但位置过于靠前会导致太大的静不稳定度。选择这样做主要是为减小配平阻力和提高机动性考虑。比如加装鸭翼后,SU-35亚音速纵向静不稳定度从SU-27的5%放宽到20%平均气动力弦长,以高机动性见长的X-29达到35%,可以比拟的只有F-22“猛禽”,这些战斗机的机动性都非常不错(想想YF-19吧,鸭翼非常靠前,而前掠翼又使得重心十分靠后,静不稳定度太大,亚音速下的控制异常灵敏,导致试飞员死的死,伤的伤,唯一一个能驾驶的还是BT)。此外,SV-51的梯形翼在亚音速时气动中心比较靠后,从亚音速到超音速的气动中心移动量也比较大,所以大幅度放宽静稳定度一部分也是因为这个原因。此外,飞机的不安定程度在有外挂时会根据载荷的不同而改变,通过运用鸭翼就能够控制其不安定程度。在湍流大气层低空飞行时,鸭翼还是纵向振动和抖动的主/被动“减震器”,大大减小了机体载荷,提高了飞行安全性和舒适性。



   有了鸭翼,就可以更好的实现直接力控制的非常规机动(DFCM)和过失速非常规机动(PSM)。当鸭翼、机翼后缘襟翼和平尾一同进行操纵时就能实现直接升力控制,进行机身俯仰指向和垂直位移机动;鸭翼差动与方向舵操纵结合就能实现直接侧力控制,进行机身方位指向和横向位移机动。直接力控制在二翼面布局的飞机上也可以实现,据说我国的SU-27使用了自己开发的全权数字式四余度电传操纵系统(FBW),具备CCV操控能力,可使飞机在没有俯仰的情况下利用直接力控制实现上升和下滑等一系列非常实用的动作。瑞典的JAS-39“鹰狮”通过鸭翼、升降舵和方向舵配合也可以产生直接升力和直接侧力,而不用改变飞机的航向。虽然控制效果不如三翼面布局,但这种“非耦合”的飞行模式在使用航炮进行空对空攻击或对地面目标投放非制导武器的时候是非常有用的。



   进气道外侧凸起的整流罩主要作用是减阻和为机枪安放提供空间,其前缘延伸至进气道唇口前面,可能还会形成涡流。整流罩向后向外扩展成扇形直至主翼根部,相当于边条翼(LEX),在大迎角下可产生脱体涡以推迟机翼失速,提高飞机升力。但由于前缘半径较大,气流不易分离,效果不如LEX,且在跨/超音速时将产生较强激波,阻碍了飞机超音速性能提高。


SV-51采用类似F/A-18E/F的梯形翼,但展弦比为5左右(估算值),超过了后者的4.0(现役战斗机一般展弦比都在2.0-3.5左右,LCA最小,只有1.79,F-16为3.2,SU-27为3.5),翼展也达到了近20米(估算值,即使除去翼梢小翼也达到了18.2米)。机翼内段后掠角30°,1/4弦长处后掠角25°,外翼段后掠角26°,1/4弦线处20°。前缘安装了全翼展的机动襟翼(由于《ZERO》剧中没有看到VS-51机翼操纵面活动的场面,所以安装机动襟翼只是猜测,亦或许是前缘缝翼。参照su-27的设计,前者的可能性较大),在锯齿处被分为2段。安装前缘机动襟翼对性能最大的改善是盘旋性能,特别是瞬时盘旋。此外推迟了大迎角时机翼上的气流分离,因而减小阻力,改善大迎角机动作战性能,提高抖振边界和增加抗失速抗尾旋性能。襟翼下偏还可以引起低头力矩,减少亚音速飞行时的配平阻力。进入超音速后,机动襟翼减阻效果变差,所以使用速度不超过M1.0。从模型中SV-51机翼刻线来看,可能后缘内段是简单襟翼,而外段是副翼。简单襟翼增加的升力不大,但机构简单,重量轻,适合SV-51这种大展弦比机翼且对着陆性能要求不高的飞机(可以短距起降)。两侧副翼可以和襟翼同角度下偏,起到全翼展襟翼的作用,增加升力,也可以差动偏转,形成滚转操纵力矩。前后缘襟翼和后缘副翼的动作由计算机飞行控制系统控制,可以根据不同飞行状态控制机翼可动部分偏转角度以优化机翼外型和增加升力系数。也许是为了增加气动控制面的控制力矩,所以把机翼后缘控制面向后延伸,形成了独特的锯齿形。




MACROSS ZERO剧中详细的给出了VF-0S机翼操纵面活动的过程:后缘内侧后退式襟翼向后伸出增加机翼面积,外侧副翼下偏,前缘缝翼却没有伸出,四块扰流板清晰可见。SV-51的机翼却没有进行特写,只能靠猜测了。


   有趣的是机翼是铰接在机身上的,所以起飞和着陆时类似F-8“十字军战士”那样可以抬起,提高机翼升力和改善操纵性,结合升力风扇和TVC喷口可以实现短距起降,而且飞机不必抬头过多。在机动时则可以实现直接升力控制(虽然不用抬起也可以实现)。从FIGHTER模式过渡到GERWALK模式时抬起还可以增加一些升力,避免因速度突然减小而出现掉高度的问题。机翼抬起时实际上形成了4个锯齿,形成的脱体涡可以带走机身表面的紊流,达到增升效果。飞行中必要的时候也可以抬起少许改善机翼流场。机翼在停放时可以两段折叠,方便在航母或机场机库中存放。




F-8“十字军战士”的机翼在起降使可以抬起一定角度,增加升力的同时不改变机身仰角,方便飞行员观察。下图的F-8是在空中增加机翼仰角,不知道是怎么回事。




SV-51潜载机弹射过程。此时机翼是两段折叠的,翼展尺寸减少到12米。根据机库的编号,潜艇内至少可以放置8架。虽然可以在水下弹射,但危险系数较高,可能更多情况下是浮出水面弹射。其实日本在1942年9月一天夜里,就用伊-25潜艇搭载的零式水上飞机偷袭了美国。


   从总体上看,SV-51的设计更多的放在了亚/跨音速机动性上。虽然翼面积较小,但是由于载油系数低,空战标准重量不高,可能在22吨左右,这样单位翼载荷就比较低。较小的翼面积也减少了摩擦阻力,对提高速度有利。加上较小的后掠角和较大的展弦比,使得亚音速机动时诱导阻力减少,可用升力系数较大。因为在机动飞行时,诱导阻力和ny(法向过载)的平方成正比,在同样高度-速度下,当ny=5时诱导阻力将增加到1g时的25倍,所以,尽可能减少诱导阻力就能有效改善战斗机的SEP特性。F-14的推重比不如F-15,但在模拟格斗机动时能明显减少诱导阻力,所以对发动机可用推力的要求也降低了。而SV-51不开加力时的发动机最大推力达到10,459.2 kg,高的可用推力可以克服高G盘旋时产生的巨大诱阻,再加上可用升力系数大的机翼,使得SV-51可以拉出高G过载的稳定盘旋,增大盘旋角速度,减小盘旋半径,这对空战是非常有利的。采用展弦比为5的机翼另一方面可能是对小速度下升力不足的担心。在飞行包线左端主要是进行过失速机动的区域,也是利用GERWALK模式进行机动的区域。此时的飞机由于做各种角度机动,使得能量迅速减少,高度和速度较小,特别是从FIGHTER模式过渡到GERWALK模式,所以做完机动后要迅速对飞机补充能量,否则很容易被导弹锁定击落。大展弦比的机翼可用升力系数大,可以较快恢复速度补充能量。使用新型OTM材料也解决了大展弦比机翼的强度和重量问题。统合军选择变后掠翼的原因可能也差不多,因为VF-1、VF-5000、VF-11都没有放弃变后掠翼,直至YF-19使用推力惊人的发动机使得整机推重比达到10以上才完美解决了这个问题。



MACROSS中最常用的空战战术动作,变形急剧减速让敌机前冲以获得有利位置,创造射击机会。VF-0做这个动作时减速板和扰流板是打开的。



MACROSS ZERO中常常出现的GERWALK模式,此时的飞机能量小,速度-高度都不大,应该很容易被导弹击中才对,但是剧中躲闪导弹的镜头非常多。想想现实中直升机躲闪导弹是什么样的情形。





以上大牛内容  参见 http://bbs.a9vg.com/thread-903699-1-1.html



SV 51  
反统合联盟的变形战斗机,其设计比VF-0系列早,机体也比VF-0大。虽然与VF-0系列同为先期试生产型,但具有较高的完成度。
由于俄国Sukhoi设计局人员参与了设计,SV-51继承了Sukhoi系列战斗机的高机动性的特点。   
类别 先期试生产可变形战斗机   
设计制造 苏霍伊设计局(Sukhoi)/以色列航空工业(Israel Aircraft Industry)/道尼尔(Dornier)   
机体尺寸 全长:22.77米   
主发动机 アビアドガテル(Aviadvigatel)D-30F6X涡轮风扇喷气发动机2台                 
推力:10,459.2 kg x2     (102.5 kN x2)油门全开   20,887.8 kg x2     (204.7 kN x2)使用后燃器加力  
辅助发动机   VTOL用升力风扇2台   
机体空重   17800公斤   
机体性能 最大速度   
2.81马赫(11000米高度)   
使用升限   22500米   
续航距离   1910公里   
武器系统 固定武器   Gsh-231 12.7mm Minigun x2   
标准武器   Gsh-371 55mm Gun Pod:弹夹外置,可更换(备弹120发)   
复合荚舱(POD)   挂载在两翼翼尖的大型荚舱(POD),内设微型导弹发射器和辅助油箱.每具能够搭载兹洛波夫SA-19M微型导弹18枚   
追加武器   6个外挂点可以挂载大多数符合华约标准的外挂武器.   
防御装备    SPO-15C三百六十度被动雷达警戒系统      
RP-51 主动隐形系统       
SWAG能源转换装甲   
APP-60型铂条/曳光干扰弹发射器   






翼面设计



   SV-51之所以选择三翼面布局,一是因为苏霍伊设计局从SU-35和SU-47中积累了大量经验,二是延续了以前的设计思想--强调机动性。从SU-47最初立项中可以就看出由于过于强调格斗能力而被空军“另眼相看”。三翼面飞机在许多方面都超过了传统的二翼面飞机。比如美国在“飞机精确控制技术”(PACT)项目中发现,F-4 PACT验证机不需要依赖大的静不稳定度就可得到机动性很大的提高,特别是在M=0.90时单位剩余功率提高量比较大,而这正是飞机作急剧机动格斗常用的M数区。F-15S/MTD验证机表明,鸭面使气动中心前移,增大飞机静不稳定,提高了主动控制系统(ACT)的效能,比二翼面布局容易实现直接力控制,从而达到对飞行轨迹的精确控制。而且升力线斜率加大,特别是大迎角时升力有明显增大。鸭面控制机翼气流分离的有利干扰在三翼面布局上依然存在,进行大迎角机动时失速迎角推迟,出现难以改出的深失速的可能性减小,减少了诱导阻力。鸭翼还提高了机动性和改善了襟翼、平尾以及垂尾舵面的操纵效率。在进行相同过载机动时,机翼载荷比二翼面布局小,全机载荷分配更均匀合理,因而可以减轻结构重量。比如进行法向过载为7g的机动时,二翼面布局的F-15机翼要承受6.9g过载,平尾为O.1g,而三翼面的F-15S/MTD机翼承受过载减小到5.2g,鸭面和平尾各承受0.9g,从而可以拉出更高的过载。而SU-35在不用加强机体结构强度的情况下稳定过载就达到了10g。在超音速时,三翼面飞机的静稳定度也比二翼面飞机小,使得配平阻力减小,机动性能力提高。如果在设计开始就考虑三翼面布局可以得到一架更轻的飞机,更充分发挥这种布局的优点。基于三翼面布局可以大幅度提高机动性的优点,加上之前的经验,苏霍伊为SV-51选择这种布局也就不足为奇了。


   但是三翼面布局的鸭面有利干扰在迎角增大到一定程度时,涡流会发生破裂,导致稳定性和操纵性发生突然变化,以及气动力非线性的产生(F-15ACTIVE的横向稳定性在迎角达到30°时就发生了稳定→不稳定→稳定的大幅度变化)。由于鸭面及其偏度对大迎角的稳定性和操纵性的影响在不同迎角和侧滑角时可能是相反的,在设计中要进行周密分析和详尽的试验。另外三翼面布局在小迎角时的阻力比二翼面布局大,超音速状态下更明显。由于增加了一个升力面和相应的操纵系统,重量自然增大,对飞控软件的编写也复杂许多。为了解决这些问题,苏霍伊设计局将鸭翼设计成前掠。我们知道飞行时后掠翼的气流是由翼根流向翼尖,大后掠角的鸭翼就是通过翼尖产生脱体涡对主翼的有利干扰从而达到增升目的。而将鸭翼改为前掠,气流就从翼尖流向翼根,以上种种优点和缺点就不存在了。这样鸭翼就只是作为一个独立的舵面,不会对主翼产生各种干扰。而主翼后掠角较小,展弦比大,加上其它辅助设计,即使没有鸭翼的有利干扰依然可以有较高的升力系数。选择前掠鸭翼的另一个原因可能是时间关系--纷乱的战争已经没有什么时间让苏霍伊好好研究试验鸭翼涡流和主翼之间的关系了。



   鸭翼布置在驾驶舱后,带有45°的上反角,鸭翼上反可以提高直接力控制效果,但降低了横向稳定性。翼尖前缘有雷达告警接收机(RWR)。鸭翼距离机翼较远,有较高的升阻比,提供的操纵力矩也大,加上前掠翼比后掠翼升力大,就可以减小鸭翼面积(大鸭翼很难满足跨音速面积律的要求,也增大了超音速阻力),但位置过于靠前会导致太大的静不稳定度。选择这样做主要是为减小配平阻力和提高机动性考虑。比如加装鸭翼后,SU-35亚音速纵向静不稳定度从SU-27的5%放宽到20%平均气动力弦长,以高机动性见长的X-29达到35%,可以比拟的只有F-22“猛禽”,这些战斗机的机动性都非常不错(想想YF-19吧,鸭翼非常靠前,而前掠翼又使得重心十分靠后,静不稳定度太大,亚音速下的控制异常灵敏,导致试飞员死的死,伤的伤,唯一一个能驾驶的还是BT)。此外,SV-51的梯形翼在亚音速时气动中心比较靠后,从亚音速到超音速的气动中心移动量也比较大,所以大幅度放宽静稳定度一部分也是因为这个原因。此外,飞机的不安定程度在有外挂时会根据载荷的不同而改变,通过运用鸭翼就能够控制其不安定程度。在湍流大气层低空飞行时,鸭翼还是纵向振动和抖动的主/被动“减震器”,大大减小了机体载荷,提高了飞行安全性和舒适性。



   有了鸭翼,就可以更好的实现直接力控制的非常规机动(DFCM)和过失速非常规机动(PSM)。当鸭翼、机翼后缘襟翼和平尾一同进行操纵时就能实现直接升力控制,进行机身俯仰指向和垂直位移机动;鸭翼差动与方向舵操纵结合就能实现直接侧力控制,进行机身方位指向和横向位移机动。直接力控制在二翼面布局的飞机上也可以实现,据说我国的SU-27使用了自己开发的全权数字式四余度电传操纵系统(FBW),具备CCV操控能力,可使飞机在没有俯仰的情况下利用直接力控制实现上升和下滑等一系列非常实用的动作。瑞典的JAS-39“鹰狮”通过鸭翼、升降舵和方向舵配合也可以产生直接升力和直接侧力,而不用改变飞机的航向。虽然控制效果不如三翼面布局,但这种“非耦合”的飞行模式在使用航炮进行空对空攻击或对地面目标投放非制导武器的时候是非常有用的。



   进气道外侧凸起的整流罩主要作用是减阻和为机枪安放提供空间,其前缘延伸至进气道唇口前面,可能还会形成涡流。整流罩向后向外扩展成扇形直至主翼根部,相当于边条翼(LEX),在大迎角下可产生脱体涡以推迟机翼失速,提高飞机升力。但由于前缘半径较大,气流不易分离,效果不如LEX,且在跨/超音速时将产生较强激波,阻碍了飞机超音速性能提高。


SV-51采用类似F/A-18E/F的梯形翼,但展弦比为5左右(估算值),超过了后者的4.0(现役战斗机一般展弦比都在2.0-3.5左右,LCA最小,只有1.79,F-16为3.2,SU-27为3.5),翼展也达到了近20米(估算值,即使除去翼梢小翼也达到了18.2米)。机翼内段后掠角30°,1/4弦长处后掠角25°,外翼段后掠角26°,1/4弦线处20°。前缘安装了全翼展的机动襟翼(由于《ZERO》剧中没有看到VS-51机翼操纵面活动的场面,所以安装机动襟翼只是猜测,亦或许是前缘缝翼。参照su-27的设计,前者的可能性较大),在锯齿处被分为2段。安装前缘机动襟翼对性能最大的改善是盘旋性能,特别是瞬时盘旋。此外推迟了大迎角时机翼上的气流分离,因而减小阻力,改善大迎角机动作战性能,提高抖振边界和增加抗失速抗尾旋性能。襟翼下偏还可以引起低头力矩,减少亚音速飞行时的配平阻力。进入超音速后,机动襟翼减阻效果变差,所以使用速度不超过M1.0。从模型中SV-51机翼刻线来看,可能后缘内段是简单襟翼,而外段是副翼。简单襟翼增加的升力不大,但机构简单,重量轻,适合SV-51这种大展弦比机翼且对着陆性能要求不高的飞机(可以短距起降)。两侧副翼可以和襟翼同角度下偏,起到全翼展襟翼的作用,增加升力,也可以差动偏转,形成滚转操纵力矩。前后缘襟翼和后缘副翼的动作由计算机飞行控制系统控制,可以根据不同飞行状态控制机翼可动部分偏转角度以优化机翼外型和增加升力系数。也许是为了增加气动控制面的控制力矩,所以把机翼后缘控制面向后延伸,形成了独特的锯齿形。




MACROSS ZERO剧中详细的给出了VF-0S机翼操纵面活动的过程:后缘内侧后退式襟翼向后伸出增加机翼面积,外侧副翼下偏,前缘缝翼却没有伸出,四块扰流板清晰可见。SV-51的机翼却没有进行特写,只能靠猜测了。


   有趣的是机翼是铰接在机身上的,所以起飞和着陆时类似F-8“十字军战士”那样可以抬起,提高机翼升力和改善操纵性,结合升力风扇和TVC喷口可以实现短距起降,而且飞机不必抬头过多。在机动时则可以实现直接升力控制(虽然不用抬起也可以实现)。从FIGHTER模式过渡到GERWALK模式时抬起还可以增加一些升力,避免因速度突然减小而出现掉高度的问题。机翼抬起时实际上形成了4个锯齿,形成的脱体涡可以带走机身表面的紊流,达到增升效果。飞行中必要的时候也可以抬起少许改善机翼流场。机翼在停放时可以两段折叠,方便在航母或机场机库中存放。




F-8“十字军战士”的机翼在起降使可以抬起一定角度,增加升力的同时不改变机身仰角,方便飞行员观察。下图的F-8是在空中增加机翼仰角,不知道是怎么回事。




SV-51潜载机弹射过程。此时机翼是两段折叠的,翼展尺寸减少到12米。根据机库的编号,潜艇内至少可以放置8架。虽然可以在水下弹射,但危险系数较高,可能更多情况下是浮出水面弹射。其实日本在1942年9月一天夜里,就用伊-25潜艇搭载的零式水上飞机偷袭了美国。


   从总体上看,SV-51的设计更多的放在了亚/跨音速机动性上。虽然翼面积较小,但是由于载油系数低,空战标准重量不高,可能在22吨左右,这样单位翼载荷就比较低。较小的翼面积也减少了摩擦阻力,对提高速度有利。加上较小的后掠角和较大的展弦比,使得亚音速机动时诱导阻力减少,可用升力系数较大。因为在机动飞行时,诱导阻力和ny(法向过载)的平方成正比,在同样高度-速度下,当ny=5时诱导阻力将增加到1g时的25倍,所以,尽可能减少诱导阻力就能有效改善战斗机的SEP特性。F-14的推重比不如F-15,但在模拟格斗机动时能明显减少诱导阻力,所以对发动机可用推力的要求也降低了。而SV-51不开加力时的发动机最大推力达到10,459.2 kg,高的可用推力可以克服高G盘旋时产生的巨大诱阻,再加上可用升力系数大的机翼,使得SV-51可以拉出高G过载的稳定盘旋,增大盘旋角速度,减小盘旋半径,这对空战是非常有利的。采用展弦比为5的机翼另一方面可能是对小速度下升力不足的担心。在飞行包线左端主要是进行过失速机动的区域,也是利用GERWALK模式进行机动的区域。此时的飞机由于做各种角度机动,使得能量迅速减少,高度和速度较小,特别是从FIGHTER模式过渡到GERWALK模式,所以做完机动后要迅速对飞机补充能量,否则很容易被导弹锁定击落。大展弦比的机翼可用升力系数大,可以较快恢复速度补充能量。使用新型OTM材料也解决了大展弦比机翼的强度和重量问题。统合军选择变后掠翼的原因可能也差不多,因为VF-1、VF-5000、VF-11都没有放弃变后掠翼,直至YF-19使用推力惊人的发动机使得整机推重比达到10以上才完美解决了这个问题。



MACROSS中最常用的空战战术动作,变形急剧减速让敌机前冲以获得有利位置,创造射击机会。VF-0做这个动作时减速板和扰流板是打开的。



MACROSS ZERO中常常出现的GERWALK模式,此时的飞机能量小,速度-高度都不大,应该很容易被导弹击中才对,但是剧中躲闪导弹的镜头非常多。想想现实中直升机躲闪导弹是什么样的情形。





以上大牛内容  参见 http://bbs.a9vg.com/thread-903699-1-1.html

这个。。。这是技术贴。。。lz。。乃醒醒。。。
应该是梦幻帖吧。
技术贴?神马技术?
很梦幻啊~~
这应该是发到动漫版的技术帖吧……
为啥一看楼主的贴,就想起战斗妖精雪风号。。。
AV国乃宇宙第二战机大国,第一是谁你懂的
{:soso_e119:}楼主接下
技术贴?这是脑补贴…………
这是思想蚜蠛蝶帖
暑假真烦!
这个是漫画说明贴吧。。。。
话说这飞机真丑
这是技术贴?还是科幻?
真丑~~~~~~~
真丑~~~~~~~
麦克罗斯-0里的虚拟机体啊。。。。。。
暑假真烦!
去动漫版吧。。。
我看是脑殘贴吧!
不能纯表不能纯表
超时空要塞ZERO的穿越帖
做出这东西之前你先想办法实现使战斗机拥有MBT的防御力这一要求吧,否则这么脆弱的结构没飞上天在地上就已经散架了。
结构强度成问题,我估计超过2G就散架了,J6都可以干他。
这货比起苏27来,难道不是更像F18么?
peter_rong 发表于 2011-7-2 20:32
这个。。。这是技术贴。。。lz。。乃醒醒。。。
所谓SF  科幻 是也
天天上班 发表于 2011-7-2 20:46
为啥一看楼主的贴,就想起战斗妖精雪风号。。。
雪风 挺美的  就是不能变形  变形万岁
fw190a6 发表于 2011-7-2 21:19
麦克罗斯-0里的虚拟机体啊。。。。。。
兄弟知心人
咦  这种奇怪的帖子怎么来到88区了
这不是从伊甸搬运来的么
推比太低了……
这货貌似在《macross zero》里出现过,D.D.伊万诺夫和诺拉的座驾,还是很惊艳的
霍,连带LZ和我,这文已经转手两回了…………

PS:加个【转帖】行么?又不是LZ你写的…………
以前见过
霍,连带LZ和我,这文已经转手两回了…………

PS:加个【转帖】行么?又不是LZ你写的…………
后面添链接啦,传送门,呼
伊万诺夫……
谁有1000T大锤!
好吧
这其实是传说中的J11VF
是601所的黑科技产品
使用了鸭翼,却设计出前掠的鸭翼!设计师脑子有病吗?
能YY到这种地步的...
不弄得好看一点谁看啊....