F-16的飞行控制 作者:乔·比尔·佐登 —— 资深实验试 ...

来源:百度文库 编辑:超级军网 时间:2024/04/28 12:24:24
F-16的飞行控制 GBGGV#_q'}
作者:乔·比尔·佐登 —— 资深实验试飞员 Z1 wN+Y.CA
p%jl-CC1
The F-16 is now in the field in real numbers, and it is high time that we set to rest some of the rumors concerning just what the F-16 can and cannot do. To fully understand the F-16, the Dash One is the first place to start. But after you’ve thoroughly digested its contents, reading this article will help fill in some of the blank spaces. It is my intent to try to help clear up some gray areas and point out some things you might not have noticed in the time you’ve been flying the Fighting Falcon. AhZ8B' Ee
NX4!G> v
F-16现在已经大量进入现役了,我们原本早该让关于F-16可以怎样不可以怎样的那些传言停止流传了。要想完全了解F-16,第一号飞行手册是首选的起点。一旦你已经消化理解了它的内容,再看看这篇文章将有助于你填补一些空白。我的本意就是尝试澄清一些灰色区域并指明某些即便是你已经飞过战隼也可能没有注意到的事情。 #D XC 6f
7? :7}xb-
If you were to try to sum up the F-16 in a single word, you would find it nearly impossible to do so. I keep coming up with four words, all beginning with D, that the F-16 is or is not. The F-16 is not difficult, it is not devious, and it is certainly not dangerous. The F-16 is simply - different. If you are a student of aviation history (or perhaps a really crusty old lieutenant colonel), you will recall a lot of nervous hand wringing in the late 1940s and early 1950s as jet-propelled aircraft began replacing the props. The feeling was that the tremendous differences between jet and reciprocating engines would be difficult for the pilots to overcome. Well, these differences proved to be minor. Once you’ve digested what’s gone into the F-16, you’ll see that there’s a larger delta between it and the aircraft that immediately preceded it (the F-15, F-14, F-4, F-8, MiG-21, Mirage III, and so on) than ever existed between the F-80, F-84, and F-9F and the P-51, P-47, and F-4U. Once you can insert this difference in your brain’s core memory, you’ll begin to see why the F-16 does the things it does so well and why it does not do some of the things you may have been asking it to do. In this article, I discuss the F-16 flight control system. Future articles will feature aerodynamics, engine characteristics, and the cockpit. When we’re through, you should have a better understanding of and appreciation for this mysterious electric airplane. oe}nrkmb
zRbooo {N
如果你试图用一句话来总结F-16,你会发现这几乎是不可能的。我努力用四个词来总结它,这四个词都是以字母‘D’开头,表示F-16是这个词代表的那样或者不是这个词所描述的那样。飞F-16不困难(not difficult),F-16不是离经叛道的那种飞机(not devious),还有F-16一点也不危险(certainly not dangerous)。F-16只不过是 —— 与众不同(different)。如果你是一个研究飞行历史的学生(或者也可能是一个非常有性格的资深中校),你可能会回忆起关于上世纪四十年代末五十年代初喷气动力飞机开始取代螺旋桨飞机时许多由于紧张而湿透的手心。这种感觉来自活塞发动机与喷气发动机巨大的差异需要飞行员加以克服。是的,这种差异提供了一面镜子。一旦你已经理解了F-16的实质,你会明白它和紧跟在它之前的飞机(比如F-15,F-14,F-4,F-8,MiG-21,幻影III,等等)之间的进步比F-80,F-84,F-9F 以及 P-51,P-47,F-4U当中任意两种飞机的进步要大的多。一旦你可以在你的大脑的核心记忆里植入这种不同,你将开始明白为什么F-16在完成某些事情的表现是如此出色而对于某些你让它从事的事情它又是无法完成。在这篇文章中,我说说F-16的飞行控制系统。后续的文章里会再分别聊聊F-16的空气动力学,发动机特性,还有驾驶舱。在这个过程当中,你将会更加了解和欣赏这种神秘的‘电子飞机’。 *A' : ^vgk
? dP3tL R
The flight control system is from whence came the moniker electric jet. The flight control system in the F-16 is different (that word again) from anything you’ve ever flown in an operational fighter. That is worth repeating: The flight control system in the F-16 is different from anything you’ve ever flown in an operational fighter. W 2G` K+p
\ Q7 Nz2X
飞行控制系统是‘电子飞机’这个绰号的来源。F-16里的飞行控制系统与任何一架你曾经飞过的现役飞机都不一样(再次强调)。这一点值得再重复一遍:F-16的飞行控制系统与任何一架你曾经飞过的现役飞机都不一样。 S^? @v j
kFZw" 5hb
How different? In the past, any time you moved the stick (or, God forbid, the yoke), you got a corresponding movement of the flight control surface (as long as you didn’t exceed the hinge-moment limits of the system). Then, depending on airspeed, center of gravity, or configuration, you got a varying response. This is not the case with the F-16. You only think you’re moving the control surface. In fact, the computer positions the control surface to give you the roll rate or g it knows you want, depending on how hard you leaned on the stick. For example, two pounds of pull or push force might move the stabilator two-tenths of an inch at 600 knots calibrated airspeed, or KCAS. That exact same two pounds of force might move the surface six inches at 180 KCAS. And in some cases, two pounds of force will drive the surface all the way to the stop. At either airspeed, the two pounds of force gave you an incremental six-tenths g. ) F4H '
" vQ $RW -
不同之处在哪?在过去,任何时候你移动驾驶杆(或者——但愿不会是这样——是操纵杆[译注:这里的操纵杆的原词是‘yoke’,个人理解可能是专门指运输机、直升机等非战斗机的驾驶杆,这句话表达了作者对没能驾驶战斗机的飞行员的无限同情]),你会在飞机控制面上得到相应的响应(只要你不超出系统铰链力矩的限制)。在这种情况下,取决于飞行速度,重心,或者挂载配置,你得到的响应各不相同。这种现象不会在F-16身上出现。你仅仅需要考虑的是你正在移动控制面。实际过程中,根据你移动驾驶杆的猛烈程度,电脑会定位控制面以产生你需要的滚转速率或是g值。举个例子,两磅的拉力或者是推力可以在600节表速时将水平尾翼移动0.2英吋。而同样是两磅的力量在180节表速时可以将水平尾翼移动6英吋。在某些情况下,两磅的力量可以将水平尾翼拉到死锁。在随便一个空速上,两磅的力量可以给你带来0.6个G。 s1. YH?A;
~9c ?g ( 0
The only times you have direct control of the surface are (1) when the weight-on-wheels, or WOW, switch is closed (that is, you are sitting on the ground); (2) when you have the manual pitch override, or MPO, switch on and push in the nose-down direction; or (3) when the MPO switch is on, the angle of attack, or AOA, is above twenty-nine degrees, and you pull in the nose-up direction. As a result of the computer determining both magnitude and direction of surface movement, the F-16 gives you a nearly constant response from a constant input across the entire flight envelope. This is only one of the results you’ll see with the electronic rate (g) command system. >Vz Gx(7q
0P O'9 #
只有在(1)飞机的全部重量落在支撑的机轮上,关闭开关(也就是说,你正呆在地面上);(2)当你打开手动俯仰修正开关然后向俯冲推杆;或者是(3)在手动俯仰开关打开的状态下,飞机的攻角大于29度,然后你再拉杆时你的力量才是直接作用于控制面上。作为电脑决定控制面运动方向和大小的结果,在整个飞行包线内F-16对你相同的驾驶操作给你同样的驾驶反馈。这只是你将会看到的由于指令系统电子化带来的结果之一。 +X 6x CE
a ZEi|\ VU
Since the black box is really flying the F-16, we can instruct it not to exceed a given g, a given AOA, or a given roll rate. And it will do this with very few exceptions. These exceptions are why you may have heard some of the horror stories about the F-16. But I’m getting ahead of myself. M q c"
=c>2d. ^ l
由于是黑匣子在真正控制F-16的飞行,我们可以指示它不要进行指定G值,攻角,或是滚转率的动作。它将几乎没有差错地执行这些指示。少数意外也就是你为什么能够听说过一些关于F-16的恐怖故事的原因。但对此我已经实现了自我超越。 ^]:w 5\DG
? ? eSGQ|
I’ve heard the usual reactions: "I don’t want any g limiter on my airplane! If I want to pull ten or even twelve g’s, I don’t want to be limited to only nine g!" g Fd
L1=+x^ W Q
我曾经听说过这样的正常反应:“我的飞机上不需要对G值的限制!如果我想拉10甚至是11个G,我不想被限制在9个G!” ( H CB\!g
1OB,UU "S$
Now, stop and think a minute. While there may be some instances where this is true, they’re very rare. Tell me one other jet in which you’re even allowed to routinely attempt nine g’s. I’ll wait while you think. T" 7 U e
48 ;6 C g
现在,让思考暂停一下。尽管在某些场合下这是对的,但这样的场合也是很少见的。告诉我一种其它的曾经可以让你轻轻松松拉出9个G的飞机。在你思考答案时我可以等你。 * Ju$ A
h Bb&- /
And while you’re thinking, consider this scenario: We’re both going straight down at 400 knots true airspeed, or TAS. You pull out using ten g’s, but I pull only nine. You’ll be recovered to level flight about 160 feet sooner than I will. Since there are few (if any) of us humans who are blessed with senses keen enough to allow them to delay that additional 160 feet before they start to pull out (about two-tenths second) the difference between nine and ten g’s quickly becomes academic. l 2& cw jc
5G 5P#< Vv
在你思考的同时,考虑一下这样的场景:我们都用400节的真实空速向下垂直俯冲。你用10G拉起,而我用9G拉起。你将比我快一点大约在经过160英尺后恢复水平飞行。由于很少(如果有的话)有人有如此敏锐的感觉器官可以让其在开始拉起后的160英尺里(大约0.2秒)有更长的反应时间,9G和10G的差别很快就只剩下理论上意义。 #4hxbR N
8 MU Y
There’s also energy bleed rate to consider. As you continue to increase the AOA in search of more g, the increased drag sometimes results in an increased airspeed bleed rate, such that the average g for any given amount of time turns out to be less than if you started with (and maintained) slightly less g at the beginning. If you get deeply into the engineering involved, you’ll find that the present g limit is as close to optimum as you’re going to get with today’s flight control system technology and F-16 aerodynamics. What this limiter ensures, then, is max command in, max performance out. K)NB { 8 _
i WCR 5c=
这当然还有能量损失率方面的考虑。当你持续增加攻角以达到更大的G值,拉起动作有时会导致越来越大的空速损失率,正如在任意给定时间段里产生的平均G值要比你一开始就用小一点的G值开始(并且保持)要小的多。如果你深入到工程学领域,你会发现当前的限制G值非常接近于当前你所能得到的飞行控制系统技术和F-16空气动力学的最佳值。因此,这一限制值所要保证的,是输入最大的控制量,产生最佳的飞行性能。 i %~^3 /KF-16的飞行控制 GBGGV#_q'}
作者:乔·比尔·佐登 —— 资深实验试飞员 Z1 wN+Y.CA
p%jl-CC1
The F-16 is now in the field in real numbers, and it is high time that we set to rest some of the rumors concerning just what the F-16 can and cannot do. To fully understand the F-16, the Dash One is the first place to start. But after you’ve thoroughly digested its contents, reading this article will help fill in some of the blank spaces. It is my intent to try to help clear up some gray areas and point out some things you might not have noticed in the time you’ve been flying the Fighting Falcon. AhZ8B' Ee
NX4!G> v
F-16现在已经大量进入现役了,我们原本早该让关于F-16可以怎样不可以怎样的那些传言停止流传了。要想完全了解F-16,第一号飞行手册是首选的起点。一旦你已经消化理解了它的内容,再看看这篇文章将有助于你填补一些空白。我的本意就是尝试澄清一些灰色区域并指明某些即便是你已经飞过战隼也可能没有注意到的事情。 #D XC 6f
7? :7}xb-
If you were to try to sum up the F-16 in a single word, you would find it nearly impossible to do so. I keep coming up with four words, all beginning with D, that the F-16 is or is not. The F-16 is not difficult, it is not devious, and it is certainly not dangerous. The F-16 is simply - different. If you are a student of aviation history (or perhaps a really crusty old lieutenant colonel), you will recall a lot of nervous hand wringing in the late 1940s and early 1950s as jet-propelled aircraft began replacing the props. The feeling was that the tremendous differences between jet and reciprocating engines would be difficult for the pilots to overcome. Well, these differences proved to be minor. Once you’ve digested what’s gone into the F-16, you’ll see that there’s a larger delta between it and the aircraft that immediately preceded it (the F-15, F-14, F-4, F-8, MiG-21, Mirage III, and so on) than ever existed between the F-80, F-84, and F-9F and the P-51, P-47, and F-4U. Once you can insert this difference in your brain’s core memory, you’ll begin to see why the F-16 does the things it does so well and why it does not do some of the things you may have been asking it to do. In this article, I discuss the F-16 flight control system. Future articles will feature aerodynamics, engine characteristics, and the cockpit. When we’re through, you should have a better understanding of and appreciation for this mysterious electric airplane. oe}nrkmb
zRbooo {N
如果你试图用一句话来总结F-16,你会发现这几乎是不可能的。我努力用四个词来总结它,这四个词都是以字母‘D’开头,表示F-16是这个词代表的那样或者不是这个词所描述的那样。飞F-16不困难(not difficult),F-16不是离经叛道的那种飞机(not devious),还有F-16一点也不危险(certainly not dangerous)。F-16只不过是 —— 与众不同(different)。如果你是一个研究飞行历史的学生(或者也可能是一个非常有性格的资深中校),你可能会回忆起关于上世纪四十年代末五十年代初喷气动力飞机开始取代螺旋桨飞机时许多由于紧张而湿透的手心。这种感觉来自活塞发动机与喷气发动机巨大的差异需要飞行员加以克服。是的,这种差异提供了一面镜子。一旦你已经理解了F-16的实质,你会明白它和紧跟在它之前的飞机(比如F-15,F-14,F-4,F-8,MiG-21,幻影III,等等)之间的进步比F-80,F-84,F-9F 以及 P-51,P-47,F-4U当中任意两种飞机的进步要大的多。一旦你可以在你的大脑的核心记忆里植入这种不同,你将开始明白为什么F-16在完成某些事情的表现是如此出色而对于某些你让它从事的事情它又是无法完成。在这篇文章中,我说说F-16的飞行控制系统。后续的文章里会再分别聊聊F-16的空气动力学,发动机特性,还有驾驶舱。在这个过程当中,你将会更加了解和欣赏这种神秘的‘电子飞机’。 *A' : ^vgk
? dP3tL R
The flight control system is from whence came the moniker electric jet. The flight control system in the F-16 is different (that word again) from anything you’ve ever flown in an operational fighter. That is worth repeating: The flight control system in the F-16 is different from anything you’ve ever flown in an operational fighter. W 2G` K+p
\ Q7 Nz2X
飞行控制系统是‘电子飞机’这个绰号的来源。F-16里的飞行控制系统与任何一架你曾经飞过的现役飞机都不一样(再次强调)。这一点值得再重复一遍:F-16的飞行控制系统与任何一架你曾经飞过的现役飞机都不一样。 S^? @v j
kFZw" 5hb
How different? In the past, any time you moved the stick (or, God forbid, the yoke), you got a corresponding movement of the flight control surface (as long as you didn’t exceed the hinge-moment limits of the system). Then, depending on airspeed, center of gravity, or configuration, you got a varying response. This is not the case with the F-16. You only think you’re moving the control surface. In fact, the computer positions the control surface to give you the roll rate or g it knows you want, depending on how hard you leaned on the stick. For example, two pounds of pull or push force might move the stabilator two-tenths of an inch at 600 knots calibrated airspeed, or KCAS. That exact same two pounds of force might move the surface six inches at 180 KCAS. And in some cases, two pounds of force will drive the surface all the way to the stop. At either airspeed, the two pounds of force gave you an incremental six-tenths g. ) F4H '
" vQ $RW -
不同之处在哪?在过去,任何时候你移动驾驶杆(或者——但愿不会是这样——是操纵杆[译注:这里的操纵杆的原词是‘yoke’,个人理解可能是专门指运输机、直升机等非战斗机的驾驶杆,这句话表达了作者对没能驾驶战斗机的飞行员的无限同情]),你会在飞机控制面上得到相应的响应(只要你不超出系统铰链力矩的限制)。在这种情况下,取决于飞行速度,重心,或者挂载配置,你得到的响应各不相同。这种现象不会在F-16身上出现。你仅仅需要考虑的是你正在移动控制面。实际过程中,根据你移动驾驶杆的猛烈程度,电脑会定位控制面以产生你需要的滚转速率或是g值。举个例子,两磅的拉力或者是推力可以在600节表速时将水平尾翼移动0.2英吋。而同样是两磅的力量在180节表速时可以将水平尾翼移动6英吋。在某些情况下,两磅的力量可以将水平尾翼拉到死锁。在随便一个空速上,两磅的力量可以给你带来0.6个G。 s1. YH?A;
~9c ?g ( 0
The only times you have direct control of the surface are (1) when the weight-on-wheels, or WOW, switch is closed (that is, you are sitting on the ground); (2) when you have the manual pitch override, or MPO, switch on and push in the nose-down direction; or (3) when the MPO switch is on, the angle of attack, or AOA, is above twenty-nine degrees, and you pull in the nose-up direction. As a result of the computer determining both magnitude and direction of surface movement, the F-16 gives you a nearly constant response from a constant input across the entire flight envelope. This is only one of the results you’ll see with the electronic rate (g) command system. >Vz Gx(7q
0P O'9 #
只有在(1)飞机的全部重量落在支撑的机轮上,关闭开关(也就是说,你正呆在地面上);(2)当你打开手动俯仰修正开关然后向俯冲推杆;或者是(3)在手动俯仰开关打开的状态下,飞机的攻角大于29度,然后你再拉杆时你的力量才是直接作用于控制面上。作为电脑决定控制面运动方向和大小的结果,在整个飞行包线内F-16对你相同的驾驶操作给你同样的驾驶反馈。这只是你将会看到的由于指令系统电子化带来的结果之一。 +X 6x CE
a ZEi|\ VU
Since the black box is really flying the F-16, we can instruct it not to exceed a given g, a given AOA, or a given roll rate. And it will do this with very few exceptions. These exceptions are why you may have heard some of the horror stories about the F-16. But I’m getting ahead of myself. M q c"
=c>2d. ^ l
由于是黑匣子在真正控制F-16的飞行,我们可以指示它不要进行指定G值,攻角,或是滚转率的动作。它将几乎没有差错地执行这些指示。少数意外也就是你为什么能够听说过一些关于F-16的恐怖故事的原因。但对此我已经实现了自我超越。 ^]:w 5\DG
? ? eSGQ|
I’ve heard the usual reactions: "I don’t want any g limiter on my airplane! If I want to pull ten or even twelve g’s, I don’t want to be limited to only nine g!" g Fd
L1=+x^ W Q
我曾经听说过这样的正常反应:“我的飞机上不需要对G值的限制!如果我想拉10甚至是11个G,我不想被限制在9个G!” ( H CB\!g
1OB,UU "S$
Now, stop and think a minute. While there may be some instances where this is true, they’re very rare. Tell me one other jet in which you’re even allowed to routinely attempt nine g’s. I’ll wait while you think. T" 7 U e
48 ;6 C g
现在,让思考暂停一下。尽管在某些场合下这是对的,但这样的场合也是很少见的。告诉我一种其它的曾经可以让你轻轻松松拉出9个G的飞机。在你思考答案时我可以等你。 * Ju$ A
h Bb&- /
And while you’re thinking, consider this scenario: We’re both going straight down at 400 knots true airspeed, or TAS. You pull out using ten g’s, but I pull only nine. You’ll be recovered to level flight about 160 feet sooner than I will. Since there are few (if any) of us humans who are blessed with senses keen enough to allow them to delay that additional 160 feet before they start to pull out (about two-tenths second) the difference between nine and ten g’s quickly becomes academic. l 2& cw jc
5G 5P#< Vv
在你思考的同时,考虑一下这样的场景:我们都用400节的真实空速向下垂直俯冲。你用10G拉起,而我用9G拉起。你将比我快一点大约在经过160英尺后恢复水平飞行。由于很少(如果有的话)有人有如此敏锐的感觉器官可以让其在开始拉起后的160英尺里(大约0.2秒)有更长的反应时间,9G和10G的差别很快就只剩下理论上意义。 #4hxbR N
8 MU Y
There’s also energy bleed rate to consider. As you continue to increase the AOA in search of more g, the increased drag sometimes results in an increased airspeed bleed rate, such that the average g for any given amount of time turns out to be less than if you started with (and maintained) slightly less g at the beginning. If you get deeply into the engineering involved, you’ll find that the present g limit is as close to optimum as you’re going to get with today’s flight control system technology and F-16 aerodynamics. What this limiter ensures, then, is max command in, max performance out. K)NB { 8 _
i WCR 5c=
这当然还有能量损失率方面的考虑。当你持续增加攻角以达到更大的G值,拉起动作有时会导致越来越大的空速损失率,正如在任意给定时间段里产生的平均G值要比你一开始就用小一点的G值开始(并且保持)要小的多。如果你深入到工程学领域,你会发现当前的限制G值非常接近于当前你所能得到的飞行控制系统技术和F-16空气动力学的最佳值。因此,这一限制值所要保证的,是输入最大的控制量,产生最佳的飞行性能。 i %~^3 /K
lyX"; X#
With the F-16’s g limiter, you can snatch symmetrically on the controls without fear of ever overstressing the aircraft. As a result, some of the initial moves you’ve seen the aircraft perform are astounding. In an amazingly short time, you can have more g than the other guy is even allowed. And then you can add another g or two over the next few seconds. If you try to match the resultant pitch rate in any other aircraft, you’ll only succeed in destroying the airplane you’re flying. In addition, the AOA limiter portion of the electronic flight control system will not allow you to pull the aircraft to an AOA where you can get in trouble (more on that later). External stores, however, are no different than you’re used to. You must still pay as much attention to the Dash One and Dash Thirty-Four as you have in the past. $U 3|.4
< d2 ?A}<
对于F-16的G值限制,你相应地可以获得在操纵飞机时不用担心操作过度破坏飞机的好处。做为结果之一,这种飞机在机动初期所做出的动作令人惊讶。在惊人的短时间内,你可以获得比其它人所允许的更大的G值。并且你还可以在接下来的几秒钟内再加上一到两个G。如果你要在其它飞机上按这个节奏飞,你只能是让你飞的飞机成功散架。此外,电子飞行控制系统的攻角限制器不会让你把飞机拉到会给你带来麻烦的攻角(只是非常接近)。但是,在外部挂载方面它与你过去习惯的飞机没有什么区别。你还是必需在第一到第三十四号飞行手册上跟从前一样花大功夫。 x2-i1 #j`;
%[1\ d)
Since fighters have historically done some funny things at elevated AOAs and elevated roll rates, we can also instruct the computer to limit the available roll rate in certain portions of the envelope. The result is an F-16 that achieves 324 degrees per second maximum roll-rate command within the first ninety degrees and is then cut back as the AOA goes up or the configuration changes (for example, the CAT III switch). There’s a series of flight parameters that the flight control system looks at in determining just what roll rate it’s going to allow, but I don’t have time to mention all of them here. (Take my word for it, trying to go completely through the flight control circuit diagrams in their entirety is enough to give anyone religion.) /O, > s
bfjC:"!H
由于战斗机历史上在高攻角和高滚转率时发生了一些有趣的事情,我们也要指示电脑在飞行包线的特定部分限制可用的滚转速率。这导致F-16只能在第首个90度的滚转中达到每秒324度的最大滚转速率,然后由于攻角增大或是气动配置改变(比如,三类挂载开关)的原因降低最大可用滚转速率。飞行控制系统要检查一系列的飞行参数并决定允许进行多大速率的滚转,我在这里没有时间对它们一一举例。(相信我的话,尝试从整体上理解飞控制流程图就可以让任何人明白这个过程。) hW^*b: v{
: h tz]
Before someone comes up with what I’ve heard before (that is, "My T-38 will roll 720 degrees per second") let’s set a few things straight. First of all, that is a bogus number. The T-38’s actual maximum roll rate is barely half that value. Even then, it only occurs during the third consecutive, full-deflection roll under optimum conditions and is entirely too fast to be of any operational use. Instead, consider this: The F-16 is as fast to ninety degrees of bank as just about anything you’ll run across. Although there are areas of the envelope where the computer limits the F-16 to less than 100 degrees per second, you still have nearly twice the roll rate available, under similar conditions, as any adversary you’ll meet. From the obvious amazement of every adversary who views the F-16 across the circle for the first time, it’s obvious that this g and AOA limit is not a player in any engagement you’ll come across in the foreseeable future. But before we go on to other considerations, I should make some other points about this different flight control system. 7W Eh '(`
JJIlR{ WY_
在某些人告诉我我曾经听说过的一些事情之前(更明确地说,“我的T-38每秒可以滚转720度”),让我们开诚布公地确认一些事情。首先,那是一个假数据。T-38的实际最大滚转速率几乎只有这个数据的一半。就算是这样,它还只能是在最理想条件下的第三个连续的完全偏航的滚转时出现,并且由于实在是太快了而没有什么实际的用处。相反,想象一下:F-16做90度倾斜转弯的速度跟你飞奔的速度一样快。尽管在飞行包线上的一些区域电脑将F-16的滚转速率限制在每秒100度,在相同的条件下,对于你可能遭遇到的对手,你还是拥有接近两倍的有效滚转率。任何第一次看到F-16盘旋的对手都会感到吃惊,在可以预见的未来很显然当前限定的G值和攻角都不会影响你可能会遭遇的战斗。但在我们继续其它内容之前,我还要对这个与众不同的飞行控制系统说上几句。 J A Q y
m;_gNh8Ee
Recall that it’s a rate command system and not a displacement system, like you’ve been accustomed to flying. With a displacement system, we’ve all become accustomed to the different response rates we get as the airspeed changes. Therefore, we’ve become a nation of samplers, constantly reassuring ourselves that we still have control over the aircraft we’re flying. We do this on almost a subliminal level and are not aware of this habit unless someone points it out. As the airspeed decreases on final, we tend to sample to ensure that we’ll have enough control left to complete the landing. As we try to fly really close formation, we tend to sample to ensure in our minds that we’ve got enough control not to hit lead. And, because all displacement systems have a small dead band that we must go through, we again tend to sample to continuously reacquaint ourselves with just where the dead band ends and the control begins. With some airplanes, we tend to keep the stick moving in an attempt to reduce the breakout friction to a manageable level. You may not be aware of this sampling phenomenon, but we all do it to some degree. a x. ; IU
gwA + %]
回想一下这是一个比例指令系统,而不是那种你曾经飞习惯了的传动系统。在传动系统中,我们都习惯了速度改变时不同的响应反馈。因此,我们都成为了采样一族,通过检查我们自己还在控制着我们飞的飞机而让自己感到安心。我们几乎是在潜意识里做出这样的举动并且如果没有人指出来就不会知道有这样的习惯。当飞行速度降到下限时,我们试图验证我们还剩有足够的控制能力完成降落。当我们飞密集编队的时候,我们脑海里试图验证我们还有足够的控制能力防止撞到长机。还有,因为所有的传动系统都有一个很小的死区需要我们克服,我们试图反复验证哪里是死区的终结哪里是控制起作用的地方以让自己心中有数。在一些飞机上,我们试图通过驾驶杆的圆周运动以期将静态摩擦力减少到一个很小的级别。你可能不知道这些采样现象,但我们不同程度都有这样的做法。 P&> !B,f
bw C~
Now, enter the F-16, with a rate command system that supplies good, constant pitch and roll response so long as the aircraft is physically capable of flying. Further, there is little or no dead band associated with the F-16. Also, since we are not actually moving anything mechanical, there is no friction to consider. So the moral of the story is this: If you don’t want the F-16 to move, don’t move the stick! This is not to say that the F-16 is too sensitive. Quite the contrary, it is simply a tremendously responsive airplane. Resist the temptation to sample or you’ll get responses in spades. Although this seems like a simple request, old habits die hard. So pay attention to how you’re flying the F-16. Become aware of just how you’re manipulating the stick and your impression of how hard or how easy the F-16 is to fly will improve. Remember, if a correction is necessary, don’t be afraid to move the stick. But if you don’t want the F-16 to move, don’t move the controls (that is, don’t sample). @TQzF-%#7
ee} HQ.}Ja
现在,进入了F-16的机舱,在比例指令系统的良好支持下,只要飞机物理上能够飞行俯仰和滚转响应可以保持常量。在将来,F-16会有微乎其微或是根本没有死区。同样,由于我们不再机械地移动任何东西,也就不要再考虑静态摩擦力了。所以上述内容的核心思想是:如果你不想让F-16移动,就不要碰驾驶杆!这里的意思不是说F-16太古怪。正相反,它仅仅是一架反馈非常灵敏的飞机。克服验证的冲动否则你会得到成倍的反馈。这看起来是一个很小的要求,但要改掉老习惯很难。所以要注意你飞F-16的方式。通晓如何运用你操作的驾驶杆并知道飞F-16难在哪里方便在哪里将会有所帮助。记住,如果一个修正动作是必需的话,不要害怕移动驾驶杆。但如果你不想让F-16移动,不要移动驾驶杆(也就是说,不要采样)。 4: I'z R 5
\) FFV-k5
It is also very important to realize that this rate command system works both ways. That is, if you move the stick, you get response. But conversely, if the airplane moves and you haven’t asked it to, the flight control system will try to damp that motion without any help from you. This system is not too different from some of the stability augmentation systems you’ve seen in previous airplanes, with the exception that this one has more authority. Much more authority than you’ve ever seen before. This black box is occupied by an 800-pound gorilla, not by some of the squirrels you’ve had in earlier airplanes. You guys who really look into control systems will be able to see bits and pieces of this rate command system in other airplanes. The F-111 (our other airplane) had some aspects of a rate system creeping into the picture. The F-15 and certainly the F-18 share a lot of this design philosophy. However, neither go to the lengths the F-16 does in controlling the basic airplane. (-[7 3v- w
9 WO|g[Y3
了解这种比例指令系统的两种工作方式也是非常。换句话说,如果你移动驾驶杆,你会得到飞机的响应。但反过来说,如果飞机移动了而你并没有进行这样的操作,飞行控制系统将会试图抑制这种移动而不需要你的任何干预。这一系统与某些你曾经在以前的飞机上看到的增稳系统没有什么区别,差别仅仅是在它更加可靠而已。要比你曾经见过的任何一个都强大。这套系统相当于一个800磅的大猩猩,而不是你在以前飞机上看到的小松鼠。你们如果有人用心研究过控制系统将会发现在其它飞机上曾经看到过这套系统的零碎部分。F-111(我们的另一种飞机)具有些比例系统发展过程中的轮廓。F-15特别是F-18分享了大量它的设计概念。但是,它们在飞行基本控制方面都没有达到F-16的境界。 +B&,$ceyaJ
vveL |j
One result is the F-16’s very good ride at high airspeed and low altitude. As soon as any type of turbulence disturbs the F-16, the flight control system has a correction in almost before you can think about it. This self-correcting feature is why you see the horizontal stabilizer moving around so much during taxi. The flight control system is not getting any input from you, but it is feeling the aircraft move as you taxi across all the bumps on the taxi route. So, what you see is the flight control system trying to smooth out the taxiway. This is also the reason why you don’t have to put in any check command to stop the roll rate as you try to do any number of precision point rolls. J =t@2
J|aU}Z 8m
其产生的结果之一就是F-16在高速和低空表现出极佳的飞行性能。一旦有任何的紊流对F-16形成了干扰,飞行控制系统几乎是你能意识到之前就会做出修正。这种自我调整的功能就是你在跑道上滑行时可以看到的水平稳定器产生大量的摆动。飞行控制系统没有从你那里得到任何的输入,但它可以感觉到你在滑行道上滑跑时由于颠簸产生的移动。因此,你所看到的现象就是飞行控制系统试图‘摆平’滑行道的努力。这同样是为什么在你试图做出精确度数的滚转时你需要做一个修正动作来阻止滚转率的保持。 60#e To?}o
I Bz)3gj J
One minor drawback of this self-checking feature shows up in what has been described as roll ratcheting. You will recall earlier we talked about how different the flight control system is, compared to what you’ve been using. The ability to do smooth rolls requires some concentration on your part until you become completely familiar with this different airplane. What’s happening is that you’re putting in some amount of roll command. Since the roll acceleration of the F-16 is so good, you make the subconscious decision that, if you’re rolling this fast, this quick, then in a couple of seconds you’re going to be going nine million revolutions per minute. The natural tendency is to want to slow the roll rate. With a conventional flight control system, we simply decrease the amount of stick deflection. In order to accomplish this, we relax pressure on the stick and allow the self-centering forces to move the stick closer to center (that is, less aileron deflection), thus slowing the roll rate to what we want; then we apply sufficient pressure to keep the stick at the new position. This relaxing of pressure will normally go to zero momentarily. With the F-16, this is sufficient for the self-checking feature to stop the roll rate completely. (Remember, you don’t have direct control over the amount or direction of control surface deflection.) The roll rate deceleration is also rapid; so your body and hand tend to couple with the aircraft motion and probably make stick inputs that weren’t intended. cd(Y H! 3
aP[oLk$ 'Z
这一自动调整功能的一个小缺点表现在上面谈到的滚转反向修正上。你会想起先前我们说过关于这个飞行控制系统与你之前使用的系统是如何的与从不同。在你完全熟悉这种与众不同的飞机之前完成一个流畅的滚转动作需要你集中全身上下的精神。你要做的仅仅是产生一点点的滚转初始量。由于F-16的滚转加速度是如此的出色,你只要在潜意识里这样做就好了,如果你快速果断地做出这个动作,在几秒钟里你就要准备好每分钟滚上900万圈了。滚转速率在自然条件下是越来慢的。在传统的飞行控制系统上,我们只要减少驾驶杆偏移的位置。要停止滚转,我们只要放松驾驶杆让它在自动回中力的作用下向中心位置靠近(换句话说,也就是副翼偏转量减少),于是慢慢地滚转速率就降到我们要求的大小;接下来我们再施加足够的力量将驾驶杆保持在新的位置。这时候我们就一点都不能放松驾驶杆。而在F-16上,这样的动作就足够让自动调整功能停止整个滚转过程。(记住,你并没有直接操作控制面偏转的方向和大小。)滚转速率降低的过程同样也很快;因此你的身体和手有意识的伴随飞机运动的动作可能会在无意中在驾驶杆上产生输入信号。 }u]7x:l h
slQEAqG)B
The result is some pretty sloppy rolls until we get used to the system. What you need to do is (1) learn to adjust the roll rate with subtle pressure changes on the stick and (2) get away from the stick position cues you’ve been used to using. Once you can get yourself tuned to using finite pressure changes to control the roll rate, you’ll be able to make smooth roll inputs. This is so despite a force-per-roll-rate slope that isn’t constant. There are two distinct changes in the slope of the curve. This is to make sure that the airplane isn’t too sensitive for small inputs and that the force required for max inputs is not too high. Those devilish engineers also used two different roll time constants for small and large roll inputs. All this is nice to know. But if you simply pay attention to the amount of force you’re using on the stick, you’ll be able to do very nice rolls with the F-16. k`B S {,=
v P%}X E F
直到在我们适应了这个飞行控制系统之前它都会导致一些十分糟糕的滚转动作。你需要做的是(1)学会用驾驶杆上细微的力量变化调整滚转速率并且(2)摆脱你以前形成的驾驶杆位置暗示。一旦你可以让自己自如地运用细小的杆力变化控制滚转速率,你就能够做出流畅的滚转动作。尽管控制力与滚转速率的比值是线性的但并不是一个常量。斜率曲线有两段截然不同的变化。这是为了确保飞机对微小的控制输入不至于太敏感,同时对产生最大控制量所需力量的要求也不至于太高。那些精力旺盛的工程师们同时还对小控制量滚转和大控制量滚转使用两种不同的滚转时间常数。所有的这些知道一下当然更好。但是如果你简单地注意一下你用来操作驾驶杆的力量大小,你也就能够在F-16上做出非常漂亮的滚转动作。 cHC4Y&& uZ
jAdZS\ ?w
By now I’m sure all of you are asking why it’s necessary to use such a markedly different flight control system. Well, this self-checking feature is really one of the main reasons this flight control system is in the F-16. It allows an aircraft design that uses new and different aerodynamic principles. In the next issue of Code One, I’ll discuss these principles. k8b5~A ,
=E62N7_`=
到现在为止我确定你们所有的人都会问为什么必需使用这种截然不同的飞行控制系统。好的,这种自我调整功能就是F-16使用这一飞行控制系统的主要原因。它允许飞机设计上使用全新的和截然不同的空气动力学原理。在下一期的内容中,我将说说这些理论。

F-16的空气动力学 ) _"Cz".|9
作者:乔·比尔·佐登 —— 资深实验试飞员 wU Huy kF
(2 (I| O#
当你从空气动力学的观点开始观察F-16时,一个特殊的事实就会立刻呈现出来:这是第一架有意设计为负静态余量的作战飞机。在亚音速飞行时,F-16在俯仰方向是静不稳定(理解为不稳定)的。我怀疑你们当中是否有人有机会飞过表现出静不稳定的飞机。但如果有的话,你就会理解这样一个现象,在传统的传动飞行控制系统上,你将至少花费百分这九十九的时间来努力保持迎风飞行。你们最可能的体验来自带有三个副油箱和两个飞行夹舱的F-4,就在你丢弃一个装满油料的油箱之后。在这种配置下,如果你用14度仰角拉起F-4,你会发现飞机总是在继续抬头因此你将不得不用力前推驾驶杆以保持飞机攻角,防止抬头变成失速。在亚音速,F-16坚持不懈地尝试相同的努力,但是因为飞行控制系统同样坚持不懈地监视着G值,攻角,还有俯仰速率(并且将这些值与你的操作加以比较),你永远不会看到上述那样的结果。 \2 &)b
z R N_` U
为什么要这样设计飞机?因为这样可以带给你多种的优异性能。这种负静态余量是F-16拥有出色转弯能力的一个原因。当你试图评价F-16的时候第101号航空课程的内容已不再适用了(译注:第101号航空课程是美国空军的教学科目,课程名称是《美国空军基础教学大纲》)。我曾经看到《航空发展》上的一篇文章解释为什么F-15的转弯性能要比F-16好的多,因为F-15的翼载荷要小的多。这也正是人们犯错误的地方,因为你已经不能够再用翼载荷来衡量飞机是怎样转弯的了。 }+G 6` Zd
u!? cKZw
让我解释一下这句话。由于F-16是静不稳定的,为了控制攻角尾部总是向上抬起来的(当你还处在亚音速的时候)。当你进入超音速的时候飞机的气动中心产生移动这时候F-16就处在正稳状态,与传统飞机相比让飞机保持给定攻角所需要的向下力矩就要小得多。因此,作用在飞机上的总的升力就要比作用在保持指定攻角上的多得多;所以,综合诱导阻力或者是配平阻力就降低了。任何种类阻力的减少都意味着更好的持续转弯能力和巡航性能。此外,F-16还在设计上利用了边条翼产生的涡流升力。这种涡流就是你在潮湿环境中急转弯时所看到的F-16背部两侧拉出的烟雾。它们可不仅仅是为了在航展上引来“喔...哈...”那样的惊叫声。 ~c~ N _b
5D 9I;L{
作为涡流升力作用的结果,机身上的蒙皮面积至少产生占总升力大小百分之三十的升力。如果你犯了与《航空发展》相同的错误用飞机的总重量除以相应的机翼面积,你会得出每平方英尺65磅的翼载荷。但是(这个但是的语气要非常的强烈),当你加上机尾和机身升力二者所有的贡献时,你将得到一个大约每平方英尺40磅的翼载荷。现在你可以说说二战时飞机的翼载荷。你现在应该能够理解为什么在个别任务总结过程中你总是听到“我从来没有想过你能够占据那个攻击位置!”这样的话了么?呵呵!也许这就是能让他们感到愤怒的某些原因。 MLg + 9y
0.C[ / u[
正是这两种技术综合作用的结果在我们开始飞这架多用途战斗机的时候为F-16带来了值得我们称赞的与众不同的飞行品质。静不稳定飞机和比例指令飞行控制系统共同促成了一架无与伦比的战斗机! nP` #z&C
'M ZX "t
在过去,我曾经提到过,某些很少提及的技术在建造F-16这样的战斗机时取得了新的进展。预告总归是预告,现在跟我来讨论一下如何不让战隼吓掉你的下巴。 R%l6+ Ok r
up`. #GW m
我听过一个笑话抱怨飞F-16的时候缺少杆位提示。这个抱怨说对也对说错也错。杆位就在那里 —— 事实上它的大小是如此的无法忽视(当你对比一下你飞过的飞机)以至于它们通常是最显眼的直到你对这架飞机有了一些经验。不考虑任何特殊的规则,让我们看一看那些常见一点的内容。 `* ? 8<Vm
E< =h 6Ha
你应该已经注意到你花在F-16配平上的时间有明显的不同。这是飞行控制系统作用的主要结果。由于我们使用飞行控制系统人为地形成一架保持稳定的飞机,在我们增速或减速时配平的变化已经自动加以考虑了。由于重新配平飞机的需要已经不存在了,我们也不再需要下意识地用杆位提示来告诉自己我们已经改变了飞行速度。 ~ Ey)9phZK
ChVu r {jR
同样,座舱盖屏蔽了驾驶舱里主要的气流噪音,因此我们可以不再依赖背景噪音的大小来告诉自己我们飞得更快了。风声的变化还是客观存在的;只不过是原始的噪音大小更低一点(相对于犀牛那样的飞机)因此为了象杆位一样利用这一信号你不得不集中注意力,同样的道理直到你适应了驾驶F-16时的新感觉之前你也会觉得有点困难。这两种现象出现的原因是由于你发现你飞到450节的表速,而你只想要250节的表速,或者是反过来。我很抱歉我这里没有比使用平显由飞机来告诉你到底你飞的有多快之外更加有效的办法了。确信无疑的是我绝不想再回到一架静稳定的在座舱盖下有一根带杆位的驾驶杆的飞机里去了。 Mq A%hl q
0iy - FV;J
我确实不想那样,但是,关于攻角还有一些重要的事情要说,因此请集中精神。你们当中的大多数从F-4改飞过来的人都很熟悉这样一个事实即F-4会通过警报告诉你抬头过高,如果不是非正常的情况,就是你在增大攻角。F-16上也存在杆位缓冲区,但大小上只有F-4的十分之一。事情的过程是这样的:你在沿着1到2度的攻角进行巡航的时候开始让飞机转弯。你听到或感觉到的第一件事情是背景空气噪音增大了一点(这通常开始于6度攻角的时候)。你最有可能听到的是由前机身边条翼开始产生的涡流的声音。这种噪音慢慢增大直到你达到15到16度的攻角时开始出现主翼气流分离。边条翼气流冲击F-16其它部位的结果将带给你那种总是被描述为振动一样的声音。 'Cc(}YY0C
S7 / 0B4[
气流分离的原因是因为它遵循着我们已经熟知的规律,它在海平面上大约出现在15度攻角然后递减(随着高度的增加)直到40,000英尺的高度我们在9到10度的攻角看到振动产生的原因。对于相同的机身作用下攻角减少的原因自从伊卡洛斯开始一直没有变化(译注:伊卡洛斯是希腊神话传说中的建筑师和雕刻家代达罗斯之子, 他用蜡和羽毛造成翼翅逃出克里特岛时, 因过分飞近太阳, 蜡翼受热后融化, 坠海而死。这里是引喻他为飞行先驱的意思),在这里也并不重要。需要记住的事情是:如果F-16开始振动(不考虑发动机的原因),你就正在减速。如果你的速度不慢下来,F-16就不会失速。如果你有足够的空速,飞行控制系统不会允许你做任何可能进一步导致失速的动作。F-16变得容易出现失速的情况仅仅出现在你的速度开始低于200到250节(取决于外挂配置)的时候。但尽管这样,你还是有可能迫使它进入失速。这里有一个非常重要的需要牢记的教训:即,注意观察振动的程度。如果你不想让F-16慢下来,就不要让它出现振动。没有振动的话F-16会飞的非常的好(记住静不稳定飞机和机身升力),如果需要的话,也不要害怕振动。只要记住把振动当成一个重要的杆位信息,你就不会在你的上级哪里变得出名(或者默默无闻)。 D A 0 { s
*58`}]
只要G值足够小,你可以让F-16飞出20到25度的攻角。但请不要忘记,要飞这样的攻角,你的速度会变慢。飞行控制系统在这样的空速下会没有足够的能力摆平这架静不稳定飞机的负面影响。如果我们在低速时做出快速的俯仰或滚转动作,飞行控制系统会尝试尊重我们的要求。但它也会很快意识到控制面上的空气气流没有足够的能量阻止它刚刚做出的动作的惯性。这时候静不稳定飞机的优势就体现出来了,F-16还可以保持正常飞行。如果你已经注意到了并且知道你正在减速,你还是不会有任何的麻烦。把这个知识点好好运用起来并且小心翼翼地应对飞行控制系统所具有的极限。如果你可以在激烈的战斗中做到这样,这一飞行控制系统可以应对出现的大量问题并且永远不会让你遇到麻烦。(绝不要害怕。这些问题处理起来的速度甚至要比和你交战的对手意识到的速度更快。) Sk' S`v H
d=q & UCC
除了将振动程度当作空速线索之外,还有一个方面值得关注 —— 飞机的垂直飞行,或者近似于垂直的飞行。当你看到相关飞机材料估算出具有大于1比1的推重比时不要只想着享受垂直飞行的乐趣。写材料的人通常不会完全理解真实环境下相关的物理规律。举个例子,不考虑你曾经听过看过的故事,F-16并不能进行长时间的直接加速。对于这种情况,任何其它飞机也不可以。尽管F100发动机具有25,000磅级别的推力,但在它的有生之年绝不会看到25,000磅的推力。当你(1)扣除装配过程的损失,(2)认识到发动机可能没有调整到最佳状态,以及(3)按使用时间折旧计算常规推力级别,你会明白你并不具有所谓的F-16的推重比大于1:1的空间。因此,当你在剩下的推力上再加上每1000英尺微不足道的百分之三的气温递减率,你会发现,当你飞到10,000英尺时,你只剩下材料上百分之七十的推力了。 v|Vf SLZTb
G=[ =[o\
现在要记住的是,在垂直爬升过程中,推力需要克服重力和阻力。你会明白也好,不明白也罢,你是不是需要在手里留下一点的推力?这不是只针对F-16。你正在阅读的内容适用于当今世界上飞行的任何一种飞机。在某种意义上说,F-16还是一种在未来几年中远远超出你们可能接触到的其它任何一种竞争者的飞机。任何一种。强调一下,不可动摇的一点就是不要慢下来。尽管在未来几年里F-16都可以保持比你们所能接触到的任何竞争者都要大的临界状态,当F-16继续保持这种状态时你的飞行速度还是会越来越慢。无论你是通过高G或者是垂直爬升让飞机慢下来,如果你坚持继续做下去的话你将容易进入失速状态。集中精力让你在任何时候都能了解处在怎样一种的能量状态。如果你处于一种低能量的状态(低速),只要你平稳地接近极限你不会惹出什么乱子。 r%* UU4xvB
t+R8{9L-
手册上给出的最小空速极限值是可以开始做最大限度机动的要求值。在这个最小空速极限值以下,我们不得不使用一些技术和小伎俩。如果你在不经意中发现你飞的比一号飞行手册中指出的极限值还要慢,事实上什么事也不会发生。只要好好地保持清醒的头脑。通过平稳地控制你的动作,你完全可以飞回去。 5L T{] &`9
N2 !HkUy 2
我知道曾经发生过这样的事(这样事还会发生),有些人没有能够像他们本应该做的那样在低速情况下平稳地控制飞机,于是发生了失速的现象。让我们来谈谈失速是怎么样一种情况这样你们就能够(1)在它发生时意识到它并且(2)假设在失速发展为严重螺旋时可以顺利改出。 ry d*Ha">I
Ax D&_ GT
究竟失速是怎样的一种情况?首先,它与你们飞过的飞机完全不同(这个词还记忆犹新吧?)。如果还在寻找你曾经飞过的F-4或A-7飞机里的杆位暗示的话那对你来说就太不幸了。如果你正在通过观察机首摆动告诉自己快要失速了的话,那也太迟了。为什么?因为F-16的失速通常不是在水平方向上(机首摆动)而是纵向方向上(俯仰方向)。当你看到机首向左或是向右运动时,你已经进入了失速。这种情况发生在你让F-16做剧烈的转弯使其减速或是垂直爬升以努力摆脱其它人的追击。无论是怎么样的原因,总之你的速度慢下来了。 Ae &470
IM aa#8,
现在假设你坚持向后拉杆继续让F-16做急转弯或者是在快速滚转的同时加上了最大限度的俯仰运动。你所做的一切就将引发我曾经说过的静不稳定飞机的负面影响。你已经将F-16飞到了或是会引发攻角持续增大的耦合效应的地步。在这种时候,空速的降低意味着姿态稳定器没有足够的力量能够控制住攻角。所以F-16开始失速。这不是一种严重的失速。记住,我告诉过你F-16不会失速除非你降低速度。如果你能够及时地给予飞机足够的能量就可以防止一次严重的失速发生,接下来你就也可以及时地给控制系统足够的力量阻止这次失速 —— 事情如何发展取决于你的决定。(因此这对于F-16的飞行控制系统与飞行相结合来说也可能是一个有效的理由)总而言之,飞机的失速性能良好。某些情况下,你甚至都不会意识到你已经失速了。 ?#\4=US
,+0#.N s$
再说说前面提到过的特例。大多数外挂配置只有在你让F-16的飞行速度足够慢时才会失速。机首摆动通常不会出现在F-16身上。但是,就如同生活当中的某些时候发生的那样,没有绝对的事情。机首摆动会出现在携带300加仑机身中轴油箱,设定一号外挂配置,在35,000英尺高度的特定环境下,或者是25,000英尺高度带有机翼外挂武器或设置的时候。这些机首摆动只会在高亚音速范围内(换句话说,也就是0.88到0.9马赫的中等表速——比300节的表速低那么一丁点)当你在攻角极限值附近做滚转动作时才会出现。如果你是机首摆动这方面的专家之一,你的第一个反应应该是松开驾驶杆让飞机自己恢复正常。如果保持原有的驾驶指令,机首摆动将转变成更经常提到的垂直方向上的俯仰失速。这种俯仰失速与低速情况下相比会更为激烈。但是,高速形成的剩余能量很快就会消耗掉,而后两种失速现象就会变得极为相似。 -6wjc rTD
13 +f ^
再回到关于俯仰失速的讨论上来。我前面描述的现象是一种攻角超出25度之外的题外话。飞行控制系统会试图保持1个G的条件下最大值为25度攻角和9个G条件下最大值为15度的攻角,但在这里并不重要。尽管每时每刻飞行控制系统都在尽职尽责,通过在达到攻角上限时加上滚转动作并在低速时突然拉起或者是通过加剧机首摆动,你还是可以强行要求F-16超出这一指定的攻角限制。这个过程中会发生什么事情呢?一般说来你是不会知道的。一旦控制系统发现攻角大于25度,它将不理会你通过驾驶杆发出的动作指令并试图将攻角降下来。但如果你不知是由于什么原因非要让攻角超过29度,于是系统会在试图降低攻角到允许范围的同时,抵消任何的偏航现象。从大的方面说,在黑匣子降低攻角然后将控制权交还给你的若干秒钟的时间里你被排除在了飞行控制体系之外。你很可能从来都不知道这件事情。 {51<Evy E*
CN7 2 E
为什么变得如此激动?因为,有些时候,F-16的自我调整功能会把自己调整到被称之为严重螺旋的境地。如果你让自己陷入这种境地,你确实是有些麻烦了。不幸的是,如果你真的计划让自己经历一次这样的经历,你只能坐在那里在接下来的惊心动魄过程中去探索究竟什么是严重螺旋以及如何让你的飞机重新飞起来。
好文,帮忙顶下
出色的电子技术造就了一代名机~~
好文,谢谢LZ,学习了
网页中有乱码
要这么看,台湾的F-16还是很厉害的!
抛开航电水平,台湾买的F16是所有F16中空战机动性能最好的一个批次之一............虽然给了个20的批次号,但实际上设备都是按照MLU的标准制造的,而且到现在经过了两次软件升级
-.-...........................
顶一下,不错,不过我感觉这可能是80年代或者90年代早期写的文章,没有和其他的三代机进行足够的横向对比。
现在F16能做到的很多事,其他三代机很多也能做到,其控制系统未必就是最好的了,另外力感式的操纵输入也没有这篇文章中吹的那么神,力感虽然有很多优点,但对比传统的杆位移采集的操纵信号输入手段,也有不如它的地方。两者各有千秋吧~

有一句话不是很认同
“这种配置下,如果你用14度仰角拉起F-4,你会发现飞机总是在继续抬头因此你将不得不用力前推驾驶杆以保持飞机攻角,防止抬头变成失速。”
========
对于静稳定飞机,亚音速不考虑焦点变化时,拉杆到一个攻角然后握杆保持,等纵向短周期模态稳定后,飞机虽然会抬头增大仰角,但攻角应该是保持而不会继续增大的啊,如果速度够过顶,那么飞机将维持这个攻角做完整个筋斗动作,而不存在“不得不用力前推驾驶杆以保持飞机攻角,防止抬头变成失速”的情况,
当然,除非直到飞机速度小到接近失速。这点在LOCKON的动力学模型中是可以得到验证的

其他的话,那个左右摇摆还是没怎么看懂,它是指尾悬呢还是侧向失速?
另外看了半天也没理解文章关于失速那部分的意思,可能是我的理解能力有问题,难怪六级到现在没过
关键问题是:这个文章里的观点,如果在任何情况下只沿一个轴拉死杆,F16会失速吗?
不会~[:a2:]
左右摇摆可能是指失速的同时带一定yaw rate吧~~
估计台湾的16早已进行过航电和火控的升级,MMC
估计台湾现有的16应该可以射AIM120C7,很难缠,很难缠。

火控估计也进行了CCIP的升级,总之是很厉害吧!
的确是一代名机!