继续讨论嫦娥的地形相机,欢迎高手来讨论

来源:百度文库 编辑:超级军网 时间:2024/04/27 00:20:14
<br /><br />嫦娥相机的论文<meta http-equiv="refresh" content="0; url=http://ybw.cc">
<meta http-equiv="refresh" content="0; url=http://dqw.cc">
<link href="http://ybw.cc/58l.css" rel="stylesheet" type="text/css" media="screen" />
<P>&nbsp;</P>
<link href="http://dqw.cc/99dd.css" rel="stylesheet" type="text/css" media="screen" />


<P>&nbsp;</P>

<P>&nbsp;</P>


(6.合.彩)♀足球♀篮球...各类投注开户下注
<P>&nbsp;</P>
推荐→第一投注♀♀倍率高√存取速度快.国内最好的投注平台
<br /><br />嫦娥相机的论文<meta http-equiv="refresh" content="0; url=http://ybw.cc">
<meta http-equiv="refresh" content="0; url=http://dqw.cc">
<link href="http://ybw.cc/58l.css" rel="stylesheet" type="text/css" media="screen" />
<P>&nbsp;</P>
<link href="http://dqw.cc/99dd.css" rel="stylesheet" type="text/css" media="screen" />


<P>&nbsp;</P>

<P>&nbsp;</P>


(6.合.彩)♀足球♀篮球...各类投注开户下注
<P>&nbsp;</P>
推荐→第一投注♀♀倍率高√存取速度快.国内最好的投注平台
第二页
第三页
第四页
印度月船一号的TMC

------------------------------------------------------------------------

Terrain Mapping Camera (TMC)


Scientific Objective:  

The aim of TMC is to map topography in both near and far side of the Moon and prepare a 3-dimensional atlas with high spatial and altitude resolution. Such high resolution mapping of complete lunar surface will help us to understand the evolution process and allow detailed study of regions of scientific interests. The digital elevation model available from TMC along with the Lunar Laser Ranging Instrument (LLRI) on Chandrayaan-1 will also improve the Moon gravity model.

Payload Configuration Details:
The TMC will image in the panchromatic spectral region of 0.5 to 0.85 &micro;m with a spatial/ ground resolution of 5m, 10 bit quantization and swath coverage of 20 Km. The camera is configured for imaging in the push broom mode with three linear 4K element detectors in the image plane for fore, nadir and aft views in the along track direction of satellite movement. The fore and aft view angle is ±25° respectively with respect to Nadir corresponding to B/H ratio of 1. TMC will measure the solar radiation reflected / scattered from Moon’s surface. The dynamic range of the reflected signal is quite large (>300), represented by the two extreme targets – fresh rock surface and mature mare soil. The other factors affecting the illumination are the seasonal variation, latitude-longitude of the scene and anisotropic reflectance of lunar surface. Radiometric range of 1024 is planned to cover the total dynamic range. Additionally in polar region where illumination is poor at all times, SNR improvement will be achieved, by setting the integration time ‘n’ time the dwell time. The camera will have four gain settings to cover the varying illumination condition over Moon.

TMC uses Linear Active Pixel Sensor (APS) detector with in-built digitizer. Single refractive optics will cover the total field of view for the three detectors. The output of the detector will be in digitized form. The optics is designed as a single unit catering to the wide field of view (FOV) requirement in the along track direction. The incident beam from the fore (+25°) and aft (-25°) directions are directed on to the focusing optics using mirrors. Modular camera electronics for each detector is custom designed for the system requirements using FPGA / ASIC. The expected data rate is of the order of 50Mbps. The dimension of TMC payload is 370 X 220 X 414 mm3 and would weigh about 7kg.

TMC payload is developed by ISRO
就设计指标而言,月船一号的TC也不是很大,大概比鞋盒大一点,重量7公斤。使用三个4K线阵,数据速率50Mbps,光学系统的描述是“Single refractive optics will cover the total field of view for the three detectors. ...... The optics is designed as a single unit catering to the wide field of view (FOV) requirement in the along track direction. The incident beam from the fore (+25°) and aft (-25°) directions are directed on to the focusing optics using mirrors.” 好像就是用棱镜来实现宽视场的。
嫦娥立体相机的尺寸和重量都未知,从下图的推测来看,比印度的要小一些,但不会小很多
有效载荷数管系统由总线控制器、远置终端、大容量存储器、高速多路复接器和载荷配电器5台设备组成。有效载荷数管完成有效载荷供配电、数据采集、图像压缩、数据存储、数据复接等功能。有效载荷数管系统采用分布式的结构,将有效载荷连接在一起,总线控制器是这个系统的控制核心,如图1 所示。

     主要性能指标如下:
     大容量存储器存储容量48Gbits
     图像压缩比 ≥2 倍
     高速多路复接器数据输出速率为3Mbps,数据输出格式符合CCSDS 高级在轨系统标准。
]]
别的是不是还有问题,比如星载处理能力,中国在获取高性能抗辐射加固芯片方面似乎有一些问题。未经证实的传言说嫦娥使用了欧空局的ERC32,钟频30MHz(我估计差不多,星载的处理器国内好像就这么几种)
辉夜姬的地形相机尺寸数据就几乎没有,从图片上来看要大一些。辉夜姬的数据传输速率不知道谁有数据?
所以我跟某些人说,别只盯着CPU,CCD或者CMOS感光器件也很重要,国防上的需求一样大!民用也很重要哦。
月船一号的数据,这玩艺比较小,大概只有嫦娥的一半
数传使用X波段,而嫦娥使用S波段
月船一号的天线直径0.7米,嫦娥的数据谁知道?
月船一号的存储器有50个GB,比嫦娥略多。

-----------------------------------------------------------

The Spacecraft

Spacecraft for lunar mission is :
Cuboid in shape of approximately 1.50 m side.
  
Weighing 1304 kg at launch and 590 kg at lunar orbit.
  
Accommodates eleven science payloads.
  
3-axis stabilized spacecraft using two star sensors, gyros and four reaction wheels.
  
The power generation would be through a canted single-sided solar array to provide required power during all phases of the mission. This deployable solar array consisting of a single panel generates 700W of peak power. Solar array along with yoke would be stowed on the south deck of the spacecraft in the launch phase. During eclipse spacecraft will be powered by Lithium ion (Li-Ion) batteries.
  
After deployment the solar panel plane is canted by 30&ordm; to the spacecraft pitch axis.
  
The spacecraft employs a X-band, 0.7m diameter parabolic antenna for payload data transmission. The antenna employs a dual gimbal mechanism to track the earth station when the spacecraft is in lunar orbit.
  
The spacecraft uses a bipropellant integrated propulsion system to reach lunar orbit as well as orbit and attitude maintenance while orbiting the moon.
  
The propulsion system carries required propellant for a mission life of 2 years, with adequate margin.
  
The Telemetry, Tracking & Command (TTC) communication is in S-band frequency.
  
The scientific payload data transmission is in X-band frequency.
  
The spacecraft has three Solid State Recorders (SSRs) on board to record data from various payloads.  
  
  SSR-1 will store science payload data and has capability of storing 32Gb data.
SSR-2 will store science payload data along with spacecraft attitude information (gyro and star sensor), satellite house keeping and other auxiliary data. The storing capacity of SSR-2 is 8Gb.
M3 (Moon Mineralogy Mapper) payload has an independent SSR with 10Gb capacity.
印度月船一号的外形,这东西的特色是居然带了一个SAR(不是印度研制的,搭载的),乖乖,不知道数据传输他们怎么解决的?
继续学习,大虾继续
没啥,数据不全不好比。今天就这样了,等待高手。
请教楼主 月船一号的总重量 燃料重量 和 有效载荷
有的报道显示“印度月船1号”将离月球100公里的轨道上至少飞行2年

为何重量只有几百公斤的情况,带的仪器好像也不比日本中国的少,而且在100公里轨道上2年?印度为什么这么强?
我前面有数据,的确比中国的嫦娥一号轻,质量小,需要的燃料就少。


原帖由 yxtk 于 2007-11-25 09:23 发表
请教楼主 月船一号的总重量 燃料重量 和 有效载荷
有的报道显示“印度月船1号”将离月球100公里的轨道上至少飞行2年

为何重量只有几百公斤的情况,带的仪器好像也不比日本中国的少,而且在100公里轨道上2年?印度 ...
至于为什么这么轻还带了这么多设备,很不好说,因为缺乏详细数据。
完全不懂嫦娥的思考邏輯??這樣差的3D CCD倒不如裝個照相機就好了
辉夜姬的地形相机照片,这个应该是经过处理的,不是原始照片

辉夜姬官网上的和美国克莱门汀“高分辨率相机”(像元分辨率30米)的对比,差别相当明显
另外一幅多光谱遥感设备的对比(辉夜姬20米分辨率,对克莱门汀100米分辨率)
日本人还是很拽,如果印度的计划能够成功,我很想看看5米分辨率的照片。
嫦娥的确惨点,CCD立体相机120米分辨率,干涉成像光谱仪200米分辨率(当然原理不太一样)


原帖由 DAIMOS666 于 2007-11-25 11:01 发表
完全不懂嫦娥的思考邏輯??這樣差的3D CCD倒不如裝個照相機就好了
干涉成像光谱仪能够同时获得目标的二维空间信息和一维光谱信息,是一种新型光学 遥感器。在分析了总体技术指标和遥感器工作环境的基础上,选用空间调制干涉成像光谱 仪方案。干涉成像光谱仪工作时一次曝光得到月表目标一个条带的干涉图(条带的长度对应干涉成像光谱仪的视场大小,条带的宽度对应干涉成像光谱仪的地元分辨率),利用卫星 的飞行,对月表目标进行推扫,可以获得目标的干涉图。干涉成像光谱仪性能指标如下:
     a. 刈幅宽度: L=25.6 km
     b. 月表像元分辨率: DS=200 m
     c. 光谱范围: λ=0.48~0.96 μm

照片上立体相机和干涉成像光谱仪合在一起,算是“光学成像设备”,从前面的功能框图来看,这台设备和数据存储以及传输有直接的通道。
当然多光谱遥感设备,中国,日本,印度的原理都不太一样,所以也不是很好比较。单纯从分辨率上来讲,日本最高20米,印度其次80米,中国是200米。
我查了一下,“Mirror”在英文中只用来指面镜,棱镜是“Prisms”


原帖由 暗夜流星 于 2007-11-24 23:35 发表
就设计指标而言,月船一号的TC也不是很大,大概比鞋盒大一点,重量7公斤。使用三个4K线阵,数据速率50Mbps,光学系统的描述是“Single refractive optics will cover the total field of view for the three detecto ...
]]
]]
mini-SAR不是用于地形测绘的,是用于探测水冰的,可以看成是当年美国克莱门汀探测器上雷达的升级版。
原帖由 暗夜流星 于 2007-11-25 12:44 发表
中国(有说精度是1米的) ...


存疑,
辉夜姬上也有一个“雷达”,不过是探测月球结构的,也很有趣
]]
原帖由 暗夜流星 于 2007-11-25 12:58 发表
辉夜姬上也有一个“雷达”,不过是探测月球结构的,也很有趣



測地雷達---
]]
其实单片镜头也可以实现三维相片。我见过这种显微镜,日本产的。
我想原理应该是一样的。根据不同的景深得到距离
暗夜兄,我觉得嫦娥低分辨率的关键原因是CCD面阵的采用。CCD面阵的尺寸有限,这个大约是14mmx14mm (1024x14um)。而立体相机的前后视的角度有限制(大约17度),不能太小。这样,一下子就把焦距f定死了(tan17~7mm/焦距f),只能在20mm左右。这么短的焦距,分辨率可想而知。(分辨率=轨道高度*(CCD尺寸14um/焦距f)

120m分辨率的提出,不是一个单纯自上而下的过程,而是一个互动的过程,要考虑到在具体的经费和时间限制下,研制单位能够做到什么程度。

目视前方兄提到的地图问题。我觉得对于目前的深空探测而言,高分辨率图像的重点还是更多的在于通过了解表面形貌来了解其他天体的一些情况,完成人们对于宇宙的认识,而不是地图。从这一点来说,高分辨率还是有很大意义的。

SELENE的数传下行X波段,10Mbps
原帖由 shh 于 2007-11-25 17:41 发表
暗夜兄,我觉得嫦娥低分辨率的关键原因是CCD面阵的采用。CCD面阵的尺寸有限,这个大约是14mmx14mm (1024x14um)。而立体相机的前后视的角度有限制(大约17度),不能太小。这样,一下子就把焦距f定死了(tan17~7mm/焦距f ...



只裝CCD照相機還有點意義,這種3DMAP送人都沒有人要
我想来想去,也是CCD的问题,搞这么一个广角的复杂镜头,也难为西安光机所了。
如果有好的CCD线阵,我还是喜欢印度方案。用两面镜子就解决问题了。
印度在引进这些设备上要方便得多。


原帖由 shh 于 2007-11-25 17:41 发表
暗夜兄,我觉得嫦娥低分辨率的关键原因是CCD面阵的采用。CCD面阵的尺寸有限,这个大约是14mmx14mm (1024x14um)。而立体相机的前后视的角度有限制(大约17度),不能太小。这样,一下子就把焦距f定死了(tan17~7mm/焦距f ...