求助:伯努力定理与一种新构想飞行动力机

来源:百度文库 编辑:超级军网 时间:2024/04/30 14:12:30
一个航空爱好者的求助

我没有学过流体力学课程,出于自己的爱好,学了流体力学中伯努利定理的一点浅薄知识,就突发奇想搞了一个与此定理有关的新型动力机原理设计——热源动力机。但是,我不敢确定热源动力机的工作原理是否正确。出现这样的情况,主要是我的流体力学知识少的可怜,不知道这样利用伯努利定理是否正确。急盼各位导师和学兄给予指导,在此表示忠心感谢!
一、为何想起设计热源动力机?
以我简单认识,将它命名为热源动力机,也不知这样命名是否合理。
出于爱好看了一些简单的航空科普文章,特别对飞机机翼产生升力的原理非常感兴趣。
飞机在平行直线匀速飞行时,一般推重比小于1。也就是说:发动机较小的推力,机翼就产生了较大的升力,以支持其重力;一个小力产生了一个大力。这与其它飞行器有很大的区别,如:假设火箭在空中静止,其发动机推力应等于火箭的重力。在普通物理中,物体直线匀速运动和静止状态,其所受各力矢量总和都为零。
换句话说,从保持飞行高度方面考虑,这显示飞机的效率较高。为何如此?看一下机翼产生升力的原理:气流流过机翼时,分成上下两股,分别沿机翼上下表面流过。因机翼上表面突起的影响,上表面气流流速快,根据伯努利定理空气对机翼上表面压力减小较多;而下表面气流流速慢,压力减小较少。因此,产生了上下压力差。这个压力差就是机翼产生的主要升力,大约占总升力的60-80%。
另外,一般直升机的旋翼,差不多是一匹马力能得到4、5公斤的升力,而飞机螺旋桨,一般是一匹马力得到一公斤的力。我想这是因为直升机的旋翼与普通飞机的机翼一样,都利用了伯努利定理的特性。
我认为值得注意的是伯努利定理,它减少的压力与速度的平方成正比。实际中机翼的升力也是与速度有直接关系,而不与发动机的推力有直接关系,是间接关系,发动机的推力负责克服空气阻力并维持(产生)前进速度。
也许我们能设计一种新的装置,它利用伯努利定理的特性,比飞机机翼有更高的效率。
二、一个新的设想热源动力机
处于以上认识,我做一个热源动力机的设计。
1、热源动力机的结构
如图所示(热源动力机结构示意图见本文最后),其结构:由原动机、传动轴、固定格栅、筒状壳体、底板、旋转体等组成,筒状壳体的上部设置有固定格栅,固定格栅的中间与原动机壳体固定在一起,筒状壳体的底部设置有光滑上表面的底板,原动机之传动轴的下端连接有旋转体,旋转体的上表面较光滑,旋转体的上部与固定格栅相对,旋转体的底部设置有阻尼格栅,阻尼格栅的底部与有光滑上表面的底板相对。
2、热源动力机的工作原理
当原动机高速转动,旋转动力通过传动轴带动旋转体转动,旋转体底部的阻尼格栅带动旋转体下部的流体一并沿筒状壳体底板上表面旋转,使旋转体下部的流体与底板上表面之间产生相对高的旋转速度,这时,旋转体下部的流体与底板产生相对运动速度,根据伯努利定理,旋转体下部的流体对底板上表面的压强随相对运动速度加快而减小;在底板下表面所受压强基本不变的情况下,底板的上表面与下表面之间产生压力差,此压力差使底板获得向上的动力。可称底板动力。
另外,旋转体旋转时,旋转体下部的流体随旋转体一起旋转。这时,旋转体与旋转体下部流体相对运动速度接近为零,旋转体下部的流体对旋转体下表面的压强基本不变;旋转体上部流体因受固定格栅的阻尼,旋转速度极小或不旋转,旋转体上部流体与旋转体产生相对旋转速度,根据伯努利定理,旋转体上部的流体对旋转体的上表面的压强随相对运动速度加快而减小;旋转体的上表面与下表面产生压力差,此压力差使旋转体获得向上的动力。可称为旋转体动力。
综上所述,底板动力与旋转体动力的方向都是向上的,其值可累加,称其为热源动力,这就是热源动力机希望产生的动力。
3、其他说明
经过最简单的估算,热源动力可以非常大,可大于几吨、几十吨。
热源动力大小与旋转体的外沿线速度大小有关,为获得较大线速度,原动机转速要很高;并且应将旋转体、筒状壳体、底板直径做大一些,如直径几米或十几米以上。
圆形的外沿速度最高,可以想象热源动力主要在圆形外边的环形区域。
热源动力机的工作环境为流体环境。如:自然的空气、水等,或经过处理的空气、水等。
三、我的疑问
1、我设想的热源动力机工作原理正确吗?是否真能产生热源动力?
2、原动机的动力是为克服机械摩擦阻力和流体阻力,并保持(或控制)旋转速度。原动机在理想的高速旋转状态时,热源动力是否能大于原动机的动力?是否能有非常高的效率?
3、流体高速旋转会产生离心力,其对热源动力机产生的影响有多大?
4、我们知道在一般状态下,既正常空气大气压下工作的蒸气机和内燃机,都是由两种压强(内能)不同的流体之间的压力差,来驱动活塞运动,从而使流体热能转化为机械能。可不可以这样理解,流体压力差对物体做功时,流体热能就转化为物体机械能。那么热源动力机产生的热源动力也是流体压力差,这此动力做功时,会不会也是将流体的热能转化为机械能?果真如此,就是一个奇怪的问题,因为这是在单一流体中取出热能转化为机械能。这应与热力学第二定律中有关论述相矛盾。
热力学第二定律开尔文的表述:其表述更直接指出了第二类永动机的不可能性。所谓第二类永动机,是指某些人提出的例如制造一种从海水吸取热量,利用这些热量做功的机器。这种想法,并不违背能量守恒定律,因为它消耗海水的内能。大海是如此广阔,整个海水的温度只要降低一点点,释放出的热量就是天文数字,对于人类来说,海水是取之不尽、用之不竭的能量源泉,因此这类设想中的机器被称为第二类永动机。而从海水吸收热量做功,就是从单一热源吸取热量使之完全变成有用功并且不产生其他影响,开尔文的说法指出了这是不可能实现的,也就是第二类永动机是不可能实现的。
四、现状让我太烦心
关于热源动力机设想,直到现在我还是无法确认其工作原理是否正确,自己根本没有能力独立完成相关实验。我对流体力学和机械设计都是一知半解,流体力学的书看不太懂。
我不能与没学过流体力学的人讲,因为他们不会给我什么帮助,甚至会以为我走火入魔。我也找过一些学过流体力学的朋友,但支持这个设想的人很少。在济南我也很难找到专业的流体力学老师。所以热切希望各位老师、朋友能帮帮我,也希望更多的人了解这个设想,恳请名位朋友为我多介绍一些有关专家,也希望大家帮忙在有关网络论坛大量转帖。
如果此设计能成功实现,您对我的帮助不敢忘记,我愿重谢您。
由于自己的一时冲动将热源动力机的设想申请了专利,其专利申请号:ZL200610043909.0
专利申请的工作正在进行,不怕各位笑话,这种状态真让我寝食难安,也无法释怀。全是因自己的才疏学浅、能力有限无法解决问题,急盼各位老师帮助!!!

我的联系方式
地址:济南市二环东路2668号 邮编:250100 收件人:庄
QQ:56040907
E-Mail:yt_zhuang@163.com

一个为新设想不断苦恼的人

附图说明:图1为热源动力机的结构示意图;图2为热源动力机的A-A向固定格栅的结构示意图;图3为热源动力机的B-B向阻尼格栅的结构示意图。
图标记说明:1、流体环境;2、流体;3、浮体;4、浮体连接件;5、传动轴;6、原动机;7、旋转体;8、底板;9、阻尼格栅;10、筒状壳体;11、固定格栅。一个航空爱好者的求助

我没有学过流体力学课程,出于自己的爱好,学了流体力学中伯努利定理的一点浅薄知识,就突发奇想搞了一个与此定理有关的新型动力机原理设计——热源动力机。但是,我不敢确定热源动力机的工作原理是否正确。出现这样的情况,主要是我的流体力学知识少的可怜,不知道这样利用伯努利定理是否正确。急盼各位导师和学兄给予指导,在此表示忠心感谢!
一、为何想起设计热源动力机?
以我简单认识,将它命名为热源动力机,也不知这样命名是否合理。
出于爱好看了一些简单的航空科普文章,特别对飞机机翼产生升力的原理非常感兴趣。
飞机在平行直线匀速飞行时,一般推重比小于1。也就是说:发动机较小的推力,机翼就产生了较大的升力,以支持其重力;一个小力产生了一个大力。这与其它飞行器有很大的区别,如:假设火箭在空中静止,其发动机推力应等于火箭的重力。在普通物理中,物体直线匀速运动和静止状态,其所受各力矢量总和都为零。
换句话说,从保持飞行高度方面考虑,这显示飞机的效率较高。为何如此?看一下机翼产生升力的原理:气流流过机翼时,分成上下两股,分别沿机翼上下表面流过。因机翼上表面突起的影响,上表面气流流速快,根据伯努利定理空气对机翼上表面压力减小较多;而下表面气流流速慢,压力减小较少。因此,产生了上下压力差。这个压力差就是机翼产生的主要升力,大约占总升力的60-80%。
另外,一般直升机的旋翼,差不多是一匹马力能得到4、5公斤的升力,而飞机螺旋桨,一般是一匹马力得到一公斤的力。我想这是因为直升机的旋翼与普通飞机的机翼一样,都利用了伯努利定理的特性。
我认为值得注意的是伯努利定理,它减少的压力与速度的平方成正比。实际中机翼的升力也是与速度有直接关系,而不与发动机的推力有直接关系,是间接关系,发动机的推力负责克服空气阻力并维持(产生)前进速度。
也许我们能设计一种新的装置,它利用伯努利定理的特性,比飞机机翼有更高的效率。
二、一个新的设想热源动力机
处于以上认识,我做一个热源动力机的设计。
1、热源动力机的结构
如图所示(热源动力机结构示意图见本文最后),其结构:由原动机、传动轴、固定格栅、筒状壳体、底板、旋转体等组成,筒状壳体的上部设置有固定格栅,固定格栅的中间与原动机壳体固定在一起,筒状壳体的底部设置有光滑上表面的底板,原动机之传动轴的下端连接有旋转体,旋转体的上表面较光滑,旋转体的上部与固定格栅相对,旋转体的底部设置有阻尼格栅,阻尼格栅的底部与有光滑上表面的底板相对。
2、热源动力机的工作原理
当原动机高速转动,旋转动力通过传动轴带动旋转体转动,旋转体底部的阻尼格栅带动旋转体下部的流体一并沿筒状壳体底板上表面旋转,使旋转体下部的流体与底板上表面之间产生相对高的旋转速度,这时,旋转体下部的流体与底板产生相对运动速度,根据伯努利定理,旋转体下部的流体对底板上表面的压强随相对运动速度加快而减小;在底板下表面所受压强基本不变的情况下,底板的上表面与下表面之间产生压力差,此压力差使底板获得向上的动力。可称底板动力。
另外,旋转体旋转时,旋转体下部的流体随旋转体一起旋转。这时,旋转体与旋转体下部流体相对运动速度接近为零,旋转体下部的流体对旋转体下表面的压强基本不变;旋转体上部流体因受固定格栅的阻尼,旋转速度极小或不旋转,旋转体上部流体与旋转体产生相对旋转速度,根据伯努利定理,旋转体上部的流体对旋转体的上表面的压强随相对运动速度加快而减小;旋转体的上表面与下表面产生压力差,此压力差使旋转体获得向上的动力。可称为旋转体动力。
综上所述,底板动力与旋转体动力的方向都是向上的,其值可累加,称其为热源动力,这就是热源动力机希望产生的动力。
3、其他说明
经过最简单的估算,热源动力可以非常大,可大于几吨、几十吨。
热源动力大小与旋转体的外沿线速度大小有关,为获得较大线速度,原动机转速要很高;并且应将旋转体、筒状壳体、底板直径做大一些,如直径几米或十几米以上。
圆形的外沿速度最高,可以想象热源动力主要在圆形外边的环形区域。
热源动力机的工作环境为流体环境。如:自然的空气、水等,或经过处理的空气、水等。
三、我的疑问
1、我设想的热源动力机工作原理正确吗?是否真能产生热源动力?
2、原动机的动力是为克服机械摩擦阻力和流体阻力,并保持(或控制)旋转速度。原动机在理想的高速旋转状态时,热源动力是否能大于原动机的动力?是否能有非常高的效率?
3、流体高速旋转会产生离心力,其对热源动力机产生的影响有多大?
4、我们知道在一般状态下,既正常空气大气压下工作的蒸气机和内燃机,都是由两种压强(内能)不同的流体之间的压力差,来驱动活塞运动,从而使流体热能转化为机械能。可不可以这样理解,流体压力差对物体做功时,流体热能就转化为物体机械能。那么热源动力机产生的热源动力也是流体压力差,这此动力做功时,会不会也是将流体的热能转化为机械能?果真如此,就是一个奇怪的问题,因为这是在单一流体中取出热能转化为机械能。这应与热力学第二定律中有关论述相矛盾。
热力学第二定律开尔文的表述:其表述更直接指出了第二类永动机的不可能性。所谓第二类永动机,是指某些人提出的例如制造一种从海水吸取热量,利用这些热量做功的机器。这种想法,并不违背能量守恒定律,因为它消耗海水的内能。大海是如此广阔,整个海水的温度只要降低一点点,释放出的热量就是天文数字,对于人类来说,海水是取之不尽、用之不竭的能量源泉,因此这类设想中的机器被称为第二类永动机。而从海水吸收热量做功,就是从单一热源吸取热量使之完全变成有用功并且不产生其他影响,开尔文的说法指出了这是不可能实现的,也就是第二类永动机是不可能实现的。
四、现状让我太烦心
关于热源动力机设想,直到现在我还是无法确认其工作原理是否正确,自己根本没有能力独立完成相关实验。我对流体力学和机械设计都是一知半解,流体力学的书看不太懂。
我不能与没学过流体力学的人讲,因为他们不会给我什么帮助,甚至会以为我走火入魔。我也找过一些学过流体力学的朋友,但支持这个设想的人很少。在济南我也很难找到专业的流体力学老师。所以热切希望各位老师、朋友能帮帮我,也希望更多的人了解这个设想,恳请名位朋友为我多介绍一些有关专家,也希望大家帮忙在有关网络论坛大量转帖。
如果此设计能成功实现,您对我的帮助不敢忘记,我愿重谢您。
由于自己的一时冲动将热源动力机的设想申请了专利,其专利申请号:ZL200610043909.0
专利申请的工作正在进行,不怕各位笑话,这种状态真让我寝食难安,也无法释怀。全是因自己的才疏学浅、能力有限无法解决问题,急盼各位老师帮助!!!

我的联系方式
地址:济南市二环东路2668号 邮编:250100 收件人:庄
QQ:56040907
E-Mail:yt_zhuang@163.com

一个为新设想不断苦恼的人

附图说明:图1为热源动力机的结构示意图;图2为热源动力机的A-A向固定格栅的结构示意图;图3为热源动力机的B-B向阻尼格栅的结构示意图。
图标记说明:1、流体环境;2、流体;3、浮体;4、浮体连接件;5、传动轴;6、原动机;7、旋转体;8、底板;9、阻尼格栅;10、筒状壳体;11、固定格栅。
大概看了下,不知道理解的对不?
这和拽着领子把自己拎起来没什么区别
原帖由 DDG172 于 2007-3-20 12:42 发表
大概看了下,不知道理解的对不?
这和拽着领子把自己拎起来没什么区别

经典!!!
原帖由 DDG172 于 2007-3-20 12:42 发表
大概看了下,不知道理解的对不?
这和拽着领子把自己拎起来没什么区别

;P ;P
;P ;P 我上小学时候总设想把电动机和发电机的转轴焊到一起,不就可以永远转下去了~:victory:
这个东西..饿...
]]
“发动机较小的推力,机翼就产生了较大的升力,以支持其重力;一个小力产生了一个大力。”

杠杆、动滑轮、齿轮组、液压装置一样可以用一个小的力产生一个大的力

但是代价是什么?小的力要运行更长距离,而新生成的大的力运行距离较短

理想状态下做功是一样的,实际状态更会因摩擦等消耗掉部分功

飞机在发动机推力方向加速所耗的功比只会比他上升所做的功更多,再理想状态也不会超过原来发动机向前推动飞机所做的功

任何违背质能守恒的永动机都要打倒
没看太明白,楼主不会是设计的第二类永动机吧(第一类现在看来显得太白了)?
江湖失传已久的“梯云纵”……
]]
我想伯努利定理产生的空气压力差,不是直接由发动机的推力转换而来的。根据气流冲击效应产生推力,应该是直接由发动机的推力转换而来的。
也许我们能设计一种新的装置,它利用伯努利定理的特性,比飞机机翼有更高的效率。
建 议 你 自 己 先 弄 个 小 电 机 做 个 缩 比 模 型 , 所 需 花 费 不 过 十 几 元 而 已 , 如 果 成 功 了 再 去 申 请 什 么 专 利 , 否 则 的 话 还 是 不 要 浪 费 那 个 专 利 费 了 吧 。 中 国 专 利 局 保 护 的 垃 圾 专 利 已 经 够 多 的 了 。
提醒你一点,不要忘了空气是可以压缩的,泊努力原理只适用于定常流体。从你的设计看来气流流通很不顺畅,结果就是被强烈压缩。当年我念书的时候做过一个类似的试验,基本原理和你的差不多,我用的是空气压缩机来提供高速气流,忽略了空气压缩机里的空气实际上是压缩的,所以失败了。
      建议你做做试验先!祝你成功!
感谢指点!
但是我不是航空院校的,我也太笨自己做不了模型,哪位好心人能帮我做一下。
]]
看来楼主竟然对14楼的忠告选择性失明啊
楼上的,螺旋桨和旋翼的原理还是基本一致的,只是两者的速度完全不同,所以螺旋桨必须是小直径高转速(末端接近音障),转速高了效率自然就低了。
感谢仁兄指教!
我自己太笨做不了试验。
仁兄注意了没有,我的设想是有两个重要的格栅,一个跟旋转盘一起旋转,它带动下面的流体一起旋转;一个固定在筒状壳体不旋转,它使上面的流体不旋转。也许仁兄做过的试验和我的设想有一点区别。
对与空气的压缩,我的设想中没有密封流体或空气,流体可在旋转体与筒状壳体之间的缝隙流出。
假设流体为空气等,高速旋转时,受离心力作用流体会向外膨胀,这好象与理想流体的非压缩性定义不一样;但是速度稳定之后,中心部分流体会稳定下来保持较小的密度不变,这个小密度的空气在其环形的流线上,它还是可以满足理想流体的定义。
  同时中心部分会形成负压状态,这对热源动力机的影响是好是坏,我还不太清楚。我想这可能有两种情况:
  1、中心部分压强减少,形成负压。我认为热源动力机的升力,与速度有关,考虑到圆的外边沿线速度最大,所以热源动力机的升力主要在圆形的外沿附近,是一个环形。中心部分的升力较小,形成负压也不会有太大影响。
  2、如果中心和外沿都形成较大负压,其对旋转体下表面和底板上表面的作用是一样,方向相反,可相互抵消。(假设:流体对旋转体下表面和底板上表面压力都为零——真空状态。旋转体上部不旋转的流体对旋转体上表面压力减小,也可以与底板下表面不减小的压力,形成压力差。)
    如果有朋友能帮忙做试验,将不胜感激。假如试验是成功的,这设计可能会有较高的价值,果真如此我不能忘记重谢各位朋友的帮助。
看来楼主对空气压缩的理解就限于封闭空间啊:L :L :L
楼主和我是邻居
楼主物理没有学好,任何有能量交换的机构在闭合系统内都遵守能量守恒定律,你自己检查一下自己的思路,你对开放系统和闭合系统的理解有问题。
]]
太 笨 的 话 就 不 要 搞 什 么 发 明 申 请 什 么 专 利 了 , 这 不 是 你 这 种 笨 人 应 该 干 的 工 作 。 你 这 种 笨 人 专 利 代 理 最 欢 迎 啦 , 简 直 是 给 人 家 送 钱 的 。
楼上的这种冷嘲热讽很没有建设性。虽说无知者无谓是一个普遍问题,但对有学习积极性的人我们还是要本着扫除科盲的原则,给他们科普一些基本的常识,用最简明扼要的方法说明他们的设想为什么是不可行的,不然他们只会越说越犟,就像那个设计飞机的韩某,那就没救了。;funk