2014年美国科技井喷式的增长

来源:百度文库 编辑:超级军网 时间:2024/04/28 20:12:44
基础研究
  
宇宙研究成果丰硕,理论物理、生命科学等成果不断涌现,新的方法和技术同信息技术融合给科研带来巨大推动。
  
在探索宇宙方面,詹姆斯—韦伯太空望远镜的仪器设备全部到位,即将成为人类有史以来观测能力最强的太空望远镜;美国利用宇宙网络成像仪拍摄到前所未有的星系际介质图像,有助于加深对星系和星系间动态的认识;借助改进过的双子座行星成像仪拍摄到了迄今最清晰系外行星照片,将有助于科学家更好地了解系外行星的运行规律及其年龄、质量等信息;天文学家现已在计算机上“从零开始”创建一个宇宙,以前所未有的准确度模拟出了星系的分布和组成;有证据表明,早期宇宙的性质由最小星系决定。
  
美国哈佛—史密森中心在内的联合研究团队发现了宇宙原初引力波存在的直接证据,成为宇宙暴涨理论的第一个最有力验证。该研究成果同时被认为有望揭示宇宙诞生之谜;欧洲空间局的研究团队分析普朗克望远镜从同样天体捕获到的数据提出了另一种观点,认为“原初引力波”信号可能源于太空尘埃。
  
美国费米国家加速器实验室的科学家首次观察到了粲夸克衰变成反粲夸克现象。美国普林斯顿大学的研究团队宣布,找到了由物质和反物质组成的马约拉纳费米子。美拟对撞金原子再现原始“粒子汤”。上述研究不仅有助于解释宇宙为什么由物质而非反物质组成这一问题,进一步弄清暗物质的性质,还将有望厘清早期宇宙如何演化到现有状态。
  
美国天文学家发现了“体重”为地球17倍的新型岩石行星,颠覆了行星形成理论;另一项联合研究在太阳系内发现了一颗遥远的矮行星,刷新了有关太阳系边界的认知,揭示了一颗质量十倍于地球的大行星存在的可能;美国研究者联合使用多台天文望远镜发现了一颗可能是迄今发现的“最寒冷、最暗淡”的白矮星。
  
在探寻地外生命方面,美国航空航天局勾勒了利用现有及未来的太空望远镜技术寻找外星生命的路线图,保守估计银河系内一亿个星际环境可支持生命存在;搜寻地外文明科学实验计划公布了两个新的技术方法,包括在世界范围内使用望远镜阵列寻找文明存在的信号;美国科学家在火星第三大火山阿尔西亚山的山麓上,发现了大型湖泊曾经存在的痕迹;研究显示冥王星卫星“卡戎”可能存在表面冰层且有巨大的裂缝;美国天文学家首次在一个海王星大小的太阳系外行星上发现了水蒸气;利用开普勒太空望远镜在太阳系外找到了一颗大小与地球类似的拥有液态水的行星。
  
而研究发现,此前被认为最有可能孕育生命的星体之一的土卫六的海洋和死海一样“咸”,意味着其或许并不适合生命生存。进一步的观测显示,被称为“第二地球”的格利泽很可能仅是主恒星磁场爆发导致的误成像。华盛顿大学天文学家发现首个“自透镜”效应的双星系统,这种“结伴”行星的发现为人类寻找外星生命的努力增加了一个新途径。
  
美国国家航空航天局太阳动力观测卫星记录了目前无法解释的“太阳黑子消失”现象。美国天文学宣布找到太阳“失散多年的兄弟”,该星体和太阳形成于同一星云;美国国家航空航天局星际边界探索任务证实了位于太阳系边缘的神秘的能量和粒子带,可以作为指示局部星际磁场方向的“天空路标”。
  
一项研究比对了多个星体及地球海水中氘的丰度发现,部分存在于地球、陨石、月球表面的水,可能比太阳系还“老”,显示更多星系诞生生命的可能性;一项碳粒陨石研究发现,地球上水与岩石极有可能同时形成,早期地球表面或被水覆盖,生命或起源于地球形成早期;耶鲁科学家发现了迄今地球最深处的生命证据;美国科罗拉多大学博尔德分校研究人员发现在地球上空范艾伦辐射带外带的内缘附近屏蔽所谓“杀手粒子”进入地球大气层的机制。
  
美国航空航天局关于小行星月均两次撞击地球的研究报告成为热门话题;美国田纳西大学宣布一颗名为1950DA的小行星有0.3%的几率在2880年撞击地球。
  
在黑洞研究方面,2014年美国学界的一项研究成果对黑洞学说构成了有力挑战。而基于现有黑洞理论的一项研究在距离地球大约2.5亿光年的一个小型星系内发现了一个质量为太阳170亿倍的超大黑洞,观测显示其磁场强度相当于自身万有引力。而对于月球的研究则发现,月球核心外部由一个液态层所包围。
  
一项欧美联合研究宣布成功测得目前最为精确的顶夸克质量为173.34±0.76GeV(10亿电子伏特)/c2;美国麻省理工开发出一种测量技术能够将微观物体称重精度提高到阿克;美国学者检测到了迄今为止最小的力,大约42幺牛顿;一项研究报告提出了真空光速低于此前理论的新的理论体系,以及支持性证据。
  
美国国家航空航天局得到了开普勒-93b行星的直径数据为18800公里(+/-240公里),成为太阳系外星球直径精度最高的测量。美国耶鲁大学的利用激光降低一氟化锶的温度,成功制造出迄今为止温度最低的分子。美国国家标准与技术研究所发布了一台名为NIST-F2的原子钟,提供目前最精确的时间。
  
在中微子研究方面,“冰立方”捕获第三个千万亿电子伏特的中微子。而最新研究发现,银河系中心的黑洞可能是一个中微子工厂。全球距离最远的中微子实验启动,两个探测器相距800公里。
  
在暗物质研究方面,阿尔法磁谱仪最新成果显示暗物质存在可能性。美国国家航空航天局的钱德拉X射线天文台探测到来自英仙座星系团的神秘X射线信号,有可能标志着人们发现了暗物质的一种形态。美国国家航空航天局下属费米太空望远镜的最新公开数据显示,银河系心脏地带的一个信号应是由暗物质粒子相互碰撞产生的。其最终可能会带来首张暗物质图像,并揭秘暗物质的构成。美科学家提出名为“混合味道多成分暗物质“模型,美法物理学家构造成功一种暗物质模型并模拟了暗物质中的泡泡状空间。

生物医学

遗传研究更深入掌控基因;细胞学攻克检测与治疗多项难题;脑科学研究记忆刺激技术帮助恢复记忆,发现大脑存在“意识开关”和“信息交换台”。

遗传学方面,杜克大学绘制出综合酵母菌基因脆弱位点图,而脆弱位点所在区域正是DNA复制机变慢或停顿的地方,揭示了许多固体肿瘤中基因异常的源头;冷泉港实验室发现了除X、Y染色体以外的另一种决定性别的亚基因单位,失去它果蝇会变成雌雄双性体;斯克里普斯研究所利用RNA分子首次在试管中造出具有“交叉手性”的酶,即以原始RNA链为模板复制出原版本的镜像,也可以利用镜像复制出原始RNA链。

在细胞学领域,加州大学圣克鲁兹分校开发出一种机器人式的“纳米生物间谍”,能从单个活细胞内提取出样本进行RNA或DNA测序,而不会杀死细胞;该校旧金山分校不经过诱导多能干细胞转化环节将人类皮肤细胞转化为成熟的全功能肝细胞,移植到肝功能衰竭小鼠模型体内能自行蓬勃生长;索尔克研究所通过“间接谱系转化”法将人类皮肤细胞直接变成可移植白细胞。先进细胞技术公司使用与克隆“多利羊”类似的体细胞核转移技术,在实验室中首次用成人皮肤细胞克隆出干细胞;纽约干细胞基金会研究所首次用糖尿病患者的DNA克隆出与其DNA匹配的胰岛素分泌细胞;科学家还在实验室引
导人类干细胞发育成“微型胃”,具有腺体结构还能容纳肠道菌。

在脑科学研究领域,国防部先进研究项目局(DARPA)计划开展一项为期4年的记忆刺激技术研究,开发记忆植入体放入脑中帮受伤士兵或老年痴呆症患者恢复记忆;DARPA还与威斯康辛大学麦迪逊分校合作,研发出探究人脑神经结构与功能之间联系的脑研究技术;华盛顿大学发现大脑存在“意识开关”,并用电击第一次关闭了人的意识;此外多家单位研究人员还发现,脑中一个特殊部位具有信息“交换台”功能,能引导来自外部和内部记忆中的信号;塔夫茨大学成功创建出三维脑状组织模型,功能和结构特征类似于大鼠脑组织,可用于研究脑功能,开发治疗脑功能障碍新疗法。

2014年诺贝尔化学奖得主埃里克·贝齐格的团队研发出一种新型光学显微镜,能以近实时速度拍摄活细胞活动的三维高清图,跟踪观察个体蛋白质运动、受精卵发育、细胞分裂时细胞骨架的生长和收缩。

在生物医药研究方面,波士顿大学与麻省总医院共同开发出人工胰腺设备,可与智能手机连接帮助患者调节血糖,有望让Ⅰ型糖尿病患者过上正常人的生活;国家卫生院开发出自体免疫疾病新疗法,可在动物体内诱导出免疫调节细胞,有望最终攻克自体免疫疾病;伊利诺伊大学找到天然抗生素乳酸链球菌的功能结构,有望带来上千种具有医用价值的类似分子;南卡罗莱纳州立大学发现了一种给抗生素“升级”的新方法,可制造“加强版”抗生素,能使青霉素重拾昔日风采,有效抑制超级细菌。

在艾滋病、癌症和埃博拉等重大疾病研究领域,科学家完全弄清楚了艾滋病病毒表面突起的结构及其与人体细胞融合前后的动态变化,这些突起是它感染人体细胞的关键;坦普尔大学用CRISPR/Cas9基因剪辑技术首次成功地从人类细胞中彻底清除了潜在HIV-1病毒,朝永久治愈艾滋病方向迈出了重要一步;加州大学旧金山分校借助基因编辑技术,用诱导多能干细胞(iPS细胞)培育出能对抗艾滋病病毒感染的白细胞,还可以培育成其他血细胞,有望成为功能性治愈艾滋病的新方法。

哈佛大学韦斯仿生工程研究所开发出治疗乳腺癌的新方法,无需手术、化疗或放疗,能在一定程度上逆转小鼠乳腺肿瘤癌变;耶鲁大学发现了一种由海洋细菌产生的物质lomaiviticin A能通过破坏DNA的方式杀灭癌细胞;其他研究人员还发现一种生活在土壤中的致病细菌能使实验狗体内肿瘤缩小,且不会侵袭周围健康的富氧组织。

在埃博拉病毒治疗药物和疫苗研发方面,多家生物制药公司已研制出多种治疗药物,但进入市场还有待进一步临床试验;埃博拉病毒疫苗人体临床一期试验获得成功,进入二期临床试验准备。

此外还有反面消息,科学家利用在野鸭中传播的流感基因片段,制造出与“西班牙流感”极相似的致命病毒,尽管研究人员认为这有助于应对下一场流感大流行,但该实验被一些人批评为“鲁莽”“疯狂”和“危险”。

信息技术
   
研制出接近人脑的计算体系,“沃森”成为辩论高手,首台商用量子计算机问世,制造出运行最快的有机薄膜晶体管等。
   
美国政府机构宣布计划把互联网域名系统等的管理权移交给“全球利益攸关体”,放弃部分互联网管理权。
   
美国外国情报监控法庭继续延长国安局大规模电话监听项目的授权。美国国安局加速量子计算机研发, 其计算能力超越目前金融、政府部门等核心数据的加密强度。
   
美国科学家研制出一种新的、更加接近人脑的计算体系,能够将信息存储在周期信号的频率和相位内。高通公司宣布2014年年底发布首个模拟人脑工作的商用芯片。美国斯坦福大学基于人脑构造研制出一款电路板“Neurogrid”,其速度为普通电脑的9000倍。IBM公司发布了新一代模仿人类大脑的计算机芯片“神经突触计算机芯片”。
   
美国密歇根大学开发出一种可以用悬浮在水中的纳米微粒来存储照片、视频和其他文档信息的新技术。美俄研究人员利用自旋波开发出全息存储器。
   
IBM超级计算机“沃森”具备了能以正方也能以反方参加辩论的辩手功能。
   
首台商用量子计算机问世,速度不敌传统计算机。美国学者开发的99.9999%超纯度硅,将光束固体化的实验装置,集成光学电路与声学设备的芯片等,可望最终应用于量子计算。
   
一项使用激光光束为月球接入点提供宽带连接的试验取得成功。以空气为材质的新型光纤也可望实现超长距离通信。
   
美国大学研究机构制造出了目前世界上运行最快的有机薄膜晶体管,运行速度媲美部分硅晶体管。美国科学家展示了一种三维结构纳米线晶体管,并使用该器件将硅与非硅材料集成在同一个集成电路中。该技术有望帮助硅材料突破性能瓶颈。
   
美国研究小组将纳米线晶体管进行复杂组装,制造成功一种超小体积和超低能耗的控制处理器。

此外的重要进展还包括,高度交互的计算机游戏教学程序,单分子厚度电路电流的成功控制, 500千兆赫光子开关的实现,每秒32千兆字节的无线数据传输速度,以及首次在“原子线路”中观察到滞后效应等。

新材料

在纳米材料、生物材料、金属材料以及非金属材料领域获得多项突破。

在纳米材料领域,美国国家标准与技术研究院的研究人员通过在纳米尺度上采用一种独特的三明治结构,开发出一种多壁碳纳米管材料,其整体厚度还不到人类头发直径的百分之一,却可以大幅降低泡沫制品的可燃性。国家直线加速器实验室和斯坦福大学合作,首次揭示了石墨烯插层复合材料的超导机制,并发现一种潜在的工艺能使石墨烯这个具有广阔应用前景的“材料之王”获得人们梦寐以求的超导性能。宾夕法尼亚州立大学生产出超细“钻石纳米线”,其核心由钻石的基本单位结构连接而成——碳原子以三角四面体结构首尾相连,外围包着一层氢原子,这种钻石纳米线的强度和硬度都超过了目前最强的纳米管和聚合材料。哈佛大学和麻省理工学院合作,铸造出小于25纳米的三维技术物件:研究人员在精心设计的不同三维DNA模块中植入极小的金属纳米“种子”,并激发其生长成为一个与该模块相同维度的立方体纳米粒子。这是首次根据指定的三维形状,打造仅有25纳米甚至更小的无机纳米粒子,同时误差小于5纳米。

在生物材料领域,麻省理工大学合成出包含生物成分和非生物成分的活性生物材料,其中的活细胞能对环境起反应,产生复杂的生物分子,非生物材料能导电或发光。莱斯大学纳米光子学实验室研发出一项全新的彩色显示技术,可以显示出生动的红、蓝、绿三色,朝着制造“乌贼皮”超材料迈出了关键一步。这类材料可以感知到周边环境颜色,并自动改变自身颜色与周边环境融为一体,实现人们期待已久的完美光学伪装。

在金属材料方面,美中科学家发现,通过对一种名为孪晶诱导塑性(TWIP)钢材进行预处理,就能打破钢材的强度和韧性只能取其一的均衡,让钢材兼具极好的强度和韧性,借助该技术也有望生产出性能更好的钢材。

在非金属材料方面,乔治·华盛顿大学推进器和纳米技术实验室通过结合两个单原子厚的碳结构,创建了一个新的超级电容,其混合石墨烯片与单壁碳纳米管,二者具有互补性,使该设备兼具了高性能与低成本。美国科学家成功地将硅与非硅材料实现“混搭”,研制出一种具有三维结构的纳米线晶体管,能够将硅与非硅材料集成到一个集成电路中,该技术有望帮助硅材料突破瓶颈,为更快、更稳定的电子和光子设备的制造铺平道路。美国科学家还研制出一种新的陶瓷材料,由纳米支杆相互交错而形成,在压力下会弯曲,但随后会恢复形状,成为有史以来最坚固、最轻质的材料之一。
   
另外,美国多家研究机构合作,以纳米微格为基础,将“结构承重”深入到微观尺度,造出极为通透而坚固的材料,同时具有高硬度、高强度、超低密度的优点,该方法还可用于金属、高聚材料等,有望使相同重量的材料在硬度方面刷新纪录。

能源环保

新型电池研究获得突破;证明惯性约束核聚变反应释放能量比燃料吸收的多。

佐治亚理工学院开发出一种直接以生物质为原料的低温燃料电池,借助太阳能或废热即能将稻草、锯末和藻类甚至有机肥料转化为电能,能量密度比基于纤维素的微生物燃料电池高近百倍。加州大学河滨分校开发出一种主要原料是普通沙子的新型“沙基锂离子电池”,其性能和使用寿命比普通锂离子电池高三倍以上。斯坦福大学制造出稳定的金属锂阳极电池,有望让超轻、超小和超大容量的电池成为现实。俄亥俄州立大学研制出首款依靠光和空气工作的太阳能蓄电池,有望使成本降低25%。

德克萨斯大学奥斯汀分校科克雷尔工程学院造出迄今世界上最小、最快且运转时间最长的微型发动机,比一粒盐还小500倍,能把电能转化为机械能。

能源部SLAC国家加速器实验室和加州大学洛杉矶分校合作,用等离子体波加速电子,能有效为新一代加速器供以电力。

斯坦福大学设计出一种在稳定性和效率方面与铂比肩的廉价催化剂,通过添加硫原子,使磷化钼“升级”为硫磷化钼,能够让水通过电解作用产生纯净氢气。

罗西尼公司的“光纸”技术可在几乎任何表面打印出“一张纸那么薄的发光区域”。

美国国家点火装置(NIF)研究人员通过实验证明,惯性约束核聚变反应释放的能量比燃料(用于引发核聚变反应)吸收的能量多,所产生的能量是以前纪录的10倍左右。

航空航天

从近地轨道迈向深空探索成为美国航空航天局(NASA)的战略方向和“新常态”。

NASA已解决深空火箭的经费问题。NASA称“旅行者1号”再次收到来自太阳的太阳海啸波,确认这一飞离地球最远的飞行器已经进入寒冷而黑暗的星际空间。NASA最新选择出“刺猬”探测器到模拟“壁虎”的爪胶,用以测试其未来深空任务。NASA开始建造有史以来最大的运载火箭。NASA开发出混合3D打印技术,3D打印的火箭发动机喷嘴点火成功。美新一代载人飞船“猎户座”首次试飞成功。

在无人机研究方面, 美国防部计划在未来25年内,研制更智能且“更具杀伤力”的无人机,这些无人机具备多个高级功能,其主要目标是让无人机在精确导航、集群作战以及自主性方面的表现更加完备。土卫六“泰坦”位居太阳系中最有可能孕育生命的星体之列。现在,NASA正在考虑派送一个四轴飞行器前往“泰坦”搜索生命迹象。美商用载人航天器、带翼的“追梦人”成功通过7大关键飞行硬件系统的技术审查。

在飞行器方面,美国纽约大学科学家造出了世界上第一架“水母飞行器”。 是第一架能像水母在水中运动一样在空中盘旋、移动的人造飞行器,其可用于军事监视和检测空气污染等民用项目。NASA目前正计划使用一种形似向日葵的太空装置,来帮助太空望远镜首次拍摄到清晰的系外行星图像,并以此展开对陌生星球进行探索的最新项目。NASA日前测试了一个“飞碟”形状的设备,相关技术将来可能会用于载人登陆火星任务。NASA将重拾超音速客机。

探索火星方面,“好奇”号提前抵达火星主要任务地点。火星一周内迎来两位地球“来客”, 美国“火星大气与挥发演化”探测器和印度“曼加里安”号火星探测器。“好奇2.0”将携7种装备探秘红色星球。

太空商业活动方面,美国一私人研究团队准备重启已停止科学运作的国际日地探测卫星3号,为将来提供廉价的空间探索服务。美国太空探索技术公司发布了第二代“龙”飞船设计方案,希望新型飞船能于2016年将宇航员送入国际空间站。美国纽约一间私人公司计划于2018年派送飞船前往火星,并于2020年携带火星大气的尘埃样本返回地球。“天鹅座”爆炸,“太空船2号”坠毁,或使美国商业航天计划面临重大考验。基础研究
  
宇宙研究成果丰硕,理论物理、生命科学等成果不断涌现,新的方法和技术同信息技术融合给科研带来巨大推动。
  
在探索宇宙方面,詹姆斯—韦伯太空望远镜的仪器设备全部到位,即将成为人类有史以来观测能力最强的太空望远镜;美国利用宇宙网络成像仪拍摄到前所未有的星系际介质图像,有助于加深对星系和星系间动态的认识;借助改进过的双子座行星成像仪拍摄到了迄今最清晰系外行星照片,将有助于科学家更好地了解系外行星的运行规律及其年龄、质量等信息;天文学家现已在计算机上“从零开始”创建一个宇宙,以前所未有的准确度模拟出了星系的分布和组成;有证据表明,早期宇宙的性质由最小星系决定。
  
美国哈佛—史密森中心在内的联合研究团队发现了宇宙原初引力波存在的直接证据,成为宇宙暴涨理论的第一个最有力验证。该研究成果同时被认为有望揭示宇宙诞生之谜;欧洲空间局的研究团队分析普朗克望远镜从同样天体捕获到的数据提出了另一种观点,认为“原初引力波”信号可能源于太空尘埃。
  
美国费米国家加速器实验室的科学家首次观察到了粲夸克衰变成反粲夸克现象。美国普林斯顿大学的研究团队宣布,找到了由物质和反物质组成的马约拉纳费米子。美拟对撞金原子再现原始“粒子汤”。上述研究不仅有助于解释宇宙为什么由物质而非反物质组成这一问题,进一步弄清暗物质的性质,还将有望厘清早期宇宙如何演化到现有状态。
  
美国天文学家发现了“体重”为地球17倍的新型岩石行星,颠覆了行星形成理论;另一项联合研究在太阳系内发现了一颗遥远的矮行星,刷新了有关太阳系边界的认知,揭示了一颗质量十倍于地球的大行星存在的可能;美国研究者联合使用多台天文望远镜发现了一颗可能是迄今发现的“最寒冷、最暗淡”的白矮星。
  
在探寻地外生命方面,美国航空航天局勾勒了利用现有及未来的太空望远镜技术寻找外星生命的路线图,保守估计银河系内一亿个星际环境可支持生命存在;搜寻地外文明科学实验计划公布了两个新的技术方法,包括在世界范围内使用望远镜阵列寻找文明存在的信号;美国科学家在火星第三大火山阿尔西亚山的山麓上,发现了大型湖泊曾经存在的痕迹;研究显示冥王星卫星“卡戎”可能存在表面冰层且有巨大的裂缝;美国天文学家首次在一个海王星大小的太阳系外行星上发现了水蒸气;利用开普勒太空望远镜在太阳系外找到了一颗大小与地球类似的拥有液态水的行星。
  
而研究发现,此前被认为最有可能孕育生命的星体之一的土卫六的海洋和死海一样“咸”,意味着其或许并不适合生命生存。进一步的观测显示,被称为“第二地球”的格利泽很可能仅是主恒星磁场爆发导致的误成像。华盛顿大学天文学家发现首个“自透镜”效应的双星系统,这种“结伴”行星的发现为人类寻找外星生命的努力增加了一个新途径。
  
美国国家航空航天局太阳动力观测卫星记录了目前无法解释的“太阳黑子消失”现象。美国天文学宣布找到太阳“失散多年的兄弟”,该星体和太阳形成于同一星云;美国国家航空航天局星际边界探索任务证实了位于太阳系边缘的神秘的能量和粒子带,可以作为指示局部星际磁场方向的“天空路标”。
  
一项研究比对了多个星体及地球海水中氘的丰度发现,部分存在于地球、陨石、月球表面的水,可能比太阳系还“老”,显示更多星系诞生生命的可能性;一项碳粒陨石研究发现,地球上水与岩石极有可能同时形成,早期地球表面或被水覆盖,生命或起源于地球形成早期;耶鲁科学家发现了迄今地球最深处的生命证据;美国科罗拉多大学博尔德分校研究人员发现在地球上空范艾伦辐射带外带的内缘附近屏蔽所谓“杀手粒子”进入地球大气层的机制。
  
美国航空航天局关于小行星月均两次撞击地球的研究报告成为热门话题;美国田纳西大学宣布一颗名为1950DA的小行星有0.3%的几率在2880年撞击地球。
  
在黑洞研究方面,2014年美国学界的一项研究成果对黑洞学说构成了有力挑战。而基于现有黑洞理论的一项研究在距离地球大约2.5亿光年的一个小型星系内发现了一个质量为太阳170亿倍的超大黑洞,观测显示其磁场强度相当于自身万有引力。而对于月球的研究则发现,月球核心外部由一个液态层所包围。
  
一项欧美联合研究宣布成功测得目前最为精确的顶夸克质量为173.34±0.76GeV(10亿电子伏特)/c2;美国麻省理工开发出一种测量技术能够将微观物体称重精度提高到阿克;美国学者检测到了迄今为止最小的力,大约42幺牛顿;一项研究报告提出了真空光速低于此前理论的新的理论体系,以及支持性证据。
  
美国国家航空航天局得到了开普勒-93b行星的直径数据为18800公里(+/-240公里),成为太阳系外星球直径精度最高的测量。美国耶鲁大学的利用激光降低一氟化锶的温度,成功制造出迄今为止温度最低的分子。美国国家标准与技术研究所发布了一台名为NIST-F2的原子钟,提供目前最精确的时间。
  
在中微子研究方面,“冰立方”捕获第三个千万亿电子伏特的中微子。而最新研究发现,银河系中心的黑洞可能是一个中微子工厂。全球距离最远的中微子实验启动,两个探测器相距800公里。
  
在暗物质研究方面,阿尔法磁谱仪最新成果显示暗物质存在可能性。美国国家航空航天局的钱德拉X射线天文台探测到来自英仙座星系团的神秘X射线信号,有可能标志着人们发现了暗物质的一种形态。美国国家航空航天局下属费米太空望远镜的最新公开数据显示,银河系心脏地带的一个信号应是由暗物质粒子相互碰撞产生的。其最终可能会带来首张暗物质图像,并揭秘暗物质的构成。美科学家提出名为“混合味道多成分暗物质“模型,美法物理学家构造成功一种暗物质模型并模拟了暗物质中的泡泡状空间。

生物医学

遗传研究更深入掌控基因;细胞学攻克检测与治疗多项难题;脑科学研究记忆刺激技术帮助恢复记忆,发现大脑存在“意识开关”和“信息交换台”。

遗传学方面,杜克大学绘制出综合酵母菌基因脆弱位点图,而脆弱位点所在区域正是DNA复制机变慢或停顿的地方,揭示了许多固体肿瘤中基因异常的源头;冷泉港实验室发现了除X、Y染色体以外的另一种决定性别的亚基因单位,失去它果蝇会变成雌雄双性体;斯克里普斯研究所利用RNA分子首次在试管中造出具有“交叉手性”的酶,即以原始RNA链为模板复制出原版本的镜像,也可以利用镜像复制出原始RNA链。

在细胞学领域,加州大学圣克鲁兹分校开发出一种机器人式的“纳米生物间谍”,能从单个活细胞内提取出样本进行RNA或DNA测序,而不会杀死细胞;该校旧金山分校不经过诱导多能干细胞转化环节将人类皮肤细胞转化为成熟的全功能肝细胞,移植到肝功能衰竭小鼠模型体内能自行蓬勃生长;索尔克研究所通过“间接谱系转化”法将人类皮肤细胞直接变成可移植白细胞。先进细胞技术公司使用与克隆“多利羊”类似的体细胞核转移技术,在实验室中首次用成人皮肤细胞克隆出干细胞;纽约干细胞基金会研究所首次用糖尿病患者的DNA克隆出与其DNA匹配的胰岛素分泌细胞;科学家还在实验室引
导人类干细胞发育成“微型胃”,具有腺体结构还能容纳肠道菌。

在脑科学研究领域,国防部先进研究项目局(DARPA)计划开展一项为期4年的记忆刺激技术研究,开发记忆植入体放入脑中帮受伤士兵或老年痴呆症患者恢复记忆;DARPA还与威斯康辛大学麦迪逊分校合作,研发出探究人脑神经结构与功能之间联系的脑研究技术;华盛顿大学发现大脑存在“意识开关”,并用电击第一次关闭了人的意识;此外多家单位研究人员还发现,脑中一个特殊部位具有信息“交换台”功能,能引导来自外部和内部记忆中的信号;塔夫茨大学成功创建出三维脑状组织模型,功能和结构特征类似于大鼠脑组织,可用于研究脑功能,开发治疗脑功能障碍新疗法。

2014年诺贝尔化学奖得主埃里克·贝齐格的团队研发出一种新型光学显微镜,能以近实时速度拍摄活细胞活动的三维高清图,跟踪观察个体蛋白质运动、受精卵发育、细胞分裂时细胞骨架的生长和收缩。

在生物医药研究方面,波士顿大学与麻省总医院共同开发出人工胰腺设备,可与智能手机连接帮助患者调节血糖,有望让Ⅰ型糖尿病患者过上正常人的生活;国家卫生院开发出自体免疫疾病新疗法,可在动物体内诱导出免疫调节细胞,有望最终攻克自体免疫疾病;伊利诺伊大学找到天然抗生素乳酸链球菌的功能结构,有望带来上千种具有医用价值的类似分子;南卡罗莱纳州立大学发现了一种给抗生素“升级”的新方法,可制造“加强版”抗生素,能使青霉素重拾昔日风采,有效抑制超级细菌。

在艾滋病、癌症和埃博拉等重大疾病研究领域,科学家完全弄清楚了艾滋病病毒表面突起的结构及其与人体细胞融合前后的动态变化,这些突起是它感染人体细胞的关键;坦普尔大学用CRISPR/Cas9基因剪辑技术首次成功地从人类细胞中彻底清除了潜在HIV-1病毒,朝永久治愈艾滋病方向迈出了重要一步;加州大学旧金山分校借助基因编辑技术,用诱导多能干细胞(iPS细胞)培育出能对抗艾滋病病毒感染的白细胞,还可以培育成其他血细胞,有望成为功能性治愈艾滋病的新方法。

哈佛大学韦斯仿生工程研究所开发出治疗乳腺癌的新方法,无需手术、化疗或放疗,能在一定程度上逆转小鼠乳腺肿瘤癌变;耶鲁大学发现了一种由海洋细菌产生的物质lomaiviticin A能通过破坏DNA的方式杀灭癌细胞;其他研究人员还发现一种生活在土壤中的致病细菌能使实验狗体内肿瘤缩小,且不会侵袭周围健康的富氧组织。

在埃博拉病毒治疗药物和疫苗研发方面,多家生物制药公司已研制出多种治疗药物,但进入市场还有待进一步临床试验;埃博拉病毒疫苗人体临床一期试验获得成功,进入二期临床试验准备。

此外还有反面消息,科学家利用在野鸭中传播的流感基因片段,制造出与“西班牙流感”极相似的致命病毒,尽管研究人员认为这有助于应对下一场流感大流行,但该实验被一些人批评为“鲁莽”“疯狂”和“危险”。

信息技术
   
研制出接近人脑的计算体系,“沃森”成为辩论高手,首台商用量子计算机问世,制造出运行最快的有机薄膜晶体管等。
   
美国政府机构宣布计划把互联网域名系统等的管理权移交给“全球利益攸关体”,放弃部分互联网管理权。
   
美国外国情报监控法庭继续延长国安局大规模电话监听项目的授权。美国国安局加速量子计算机研发, 其计算能力超越目前金融、政府部门等核心数据的加密强度。
   
美国科学家研制出一种新的、更加接近人脑的计算体系,能够将信息存储在周期信号的频率和相位内。高通公司宣布2014年年底发布首个模拟人脑工作的商用芯片。美国斯坦福大学基于人脑构造研制出一款电路板“Neurogrid”,其速度为普通电脑的9000倍。IBM公司发布了新一代模仿人类大脑的计算机芯片“神经突触计算机芯片”。
   
美国密歇根大学开发出一种可以用悬浮在水中的纳米微粒来存储照片、视频和其他文档信息的新技术。美俄研究人员利用自旋波开发出全息存储器。
   
IBM超级计算机“沃森”具备了能以正方也能以反方参加辩论的辩手功能。
   
首台商用量子计算机问世,速度不敌传统计算机。美国学者开发的99.9999%超纯度硅,将光束固体化的实验装置,集成光学电路与声学设备的芯片等,可望最终应用于量子计算。
   
一项使用激光光束为月球接入点提供宽带连接的试验取得成功。以空气为材质的新型光纤也可望实现超长距离通信。
   
美国大学研究机构制造出了目前世界上运行最快的有机薄膜晶体管,运行速度媲美部分硅晶体管。美国科学家展示了一种三维结构纳米线晶体管,并使用该器件将硅与非硅材料集成在同一个集成电路中。该技术有望帮助硅材料突破性能瓶颈。
   
美国研究小组将纳米线晶体管进行复杂组装,制造成功一种超小体积和超低能耗的控制处理器。

此外的重要进展还包括,高度交互的计算机游戏教学程序,单分子厚度电路电流的成功控制, 500千兆赫光子开关的实现,每秒32千兆字节的无线数据传输速度,以及首次在“原子线路”中观察到滞后效应等。

新材料

在纳米材料、生物材料、金属材料以及非金属材料领域获得多项突破。

在纳米材料领域,美国国家标准与技术研究院的研究人员通过在纳米尺度上采用一种独特的三明治结构,开发出一种多壁碳纳米管材料,其整体厚度还不到人类头发直径的百分之一,却可以大幅降低泡沫制品的可燃性。国家直线加速器实验室和斯坦福大学合作,首次揭示了石墨烯插层复合材料的超导机制,并发现一种潜在的工艺能使石墨烯这个具有广阔应用前景的“材料之王”获得人们梦寐以求的超导性能。宾夕法尼亚州立大学生产出超细“钻石纳米线”,其核心由钻石的基本单位结构连接而成——碳原子以三角四面体结构首尾相连,外围包着一层氢原子,这种钻石纳米线的强度和硬度都超过了目前最强的纳米管和聚合材料。哈佛大学和麻省理工学院合作,铸造出小于25纳米的三维技术物件:研究人员在精心设计的不同三维DNA模块中植入极小的金属纳米“种子”,并激发其生长成为一个与该模块相同维度的立方体纳米粒子。这是首次根据指定的三维形状,打造仅有25纳米甚至更小的无机纳米粒子,同时误差小于5纳米。

在生物材料领域,麻省理工大学合成出包含生物成分和非生物成分的活性生物材料,其中的活细胞能对环境起反应,产生复杂的生物分子,非生物材料能导电或发光。莱斯大学纳米光子学实验室研发出一项全新的彩色显示技术,可以显示出生动的红、蓝、绿三色,朝着制造“乌贼皮”超材料迈出了关键一步。这类材料可以感知到周边环境颜色,并自动改变自身颜色与周边环境融为一体,实现人们期待已久的完美光学伪装。

在金属材料方面,美中科学家发现,通过对一种名为孪晶诱导塑性(TWIP)钢材进行预处理,就能打破钢材的强度和韧性只能取其一的均衡,让钢材兼具极好的强度和韧性,借助该技术也有望生产出性能更好的钢材。

在非金属材料方面,乔治·华盛顿大学推进器和纳米技术实验室通过结合两个单原子厚的碳结构,创建了一个新的超级电容,其混合石墨烯片与单壁碳纳米管,二者具有互补性,使该设备兼具了高性能与低成本。美国科学家成功地将硅与非硅材料实现“混搭”,研制出一种具有三维结构的纳米线晶体管,能够将硅与非硅材料集成到一个集成电路中,该技术有望帮助硅材料突破瓶颈,为更快、更稳定的电子和光子设备的制造铺平道路。美国科学家还研制出一种新的陶瓷材料,由纳米支杆相互交错而形成,在压力下会弯曲,但随后会恢复形状,成为有史以来最坚固、最轻质的材料之一。
   
另外,美国多家研究机构合作,以纳米微格为基础,将“结构承重”深入到微观尺度,造出极为通透而坚固的材料,同时具有高硬度、高强度、超低密度的优点,该方法还可用于金属、高聚材料等,有望使相同重量的材料在硬度方面刷新纪录。

能源环保

新型电池研究获得突破;证明惯性约束核聚变反应释放能量比燃料吸收的多。

佐治亚理工学院开发出一种直接以生物质为原料的低温燃料电池,借助太阳能或废热即能将稻草、锯末和藻类甚至有机肥料转化为电能,能量密度比基于纤维素的微生物燃料电池高近百倍。加州大学河滨分校开发出一种主要原料是普通沙子的新型“沙基锂离子电池”,其性能和使用寿命比普通锂离子电池高三倍以上。斯坦福大学制造出稳定的金属锂阳极电池,有望让超轻、超小和超大容量的电池成为现实。俄亥俄州立大学研制出首款依靠光和空气工作的太阳能蓄电池,有望使成本降低25%。

德克萨斯大学奥斯汀分校科克雷尔工程学院造出迄今世界上最小、最快且运转时间最长的微型发动机,比一粒盐还小500倍,能把电能转化为机械能。

能源部SLAC国家加速器实验室和加州大学洛杉矶分校合作,用等离子体波加速电子,能有效为新一代加速器供以电力。

斯坦福大学设计出一种在稳定性和效率方面与铂比肩的廉价催化剂,通过添加硫原子,使磷化钼“升级”为硫磷化钼,能够让水通过电解作用产生纯净氢气。

罗西尼公司的“光纸”技术可在几乎任何表面打印出“一张纸那么薄的发光区域”。

美国国家点火装置(NIF)研究人员通过实验证明,惯性约束核聚变反应释放的能量比燃料(用于引发核聚变反应)吸收的能量多,所产生的能量是以前纪录的10倍左右。

航空航天

从近地轨道迈向深空探索成为美国航空航天局(NASA)的战略方向和“新常态”。

NASA已解决深空火箭的经费问题。NASA称“旅行者1号”再次收到来自太阳的太阳海啸波,确认这一飞离地球最远的飞行器已经进入寒冷而黑暗的星际空间。NASA最新选择出“刺猬”探测器到模拟“壁虎”的爪胶,用以测试其未来深空任务。NASA开始建造有史以来最大的运载火箭。NASA开发出混合3D打印技术,3D打印的火箭发动机喷嘴点火成功。美新一代载人飞船“猎户座”首次试飞成功。

在无人机研究方面, 美国防部计划在未来25年内,研制更智能且“更具杀伤力”的无人机,这些无人机具备多个高级功能,其主要目标是让无人机在精确导航、集群作战以及自主性方面的表现更加完备。土卫六“泰坦”位居太阳系中最有可能孕育生命的星体之列。现在,NASA正在考虑派送一个四轴飞行器前往“泰坦”搜索生命迹象。美商用载人航天器、带翼的“追梦人”成功通过7大关键飞行硬件系统的技术审查。

在飞行器方面,美国纽约大学科学家造出了世界上第一架“水母飞行器”。 是第一架能像水母在水中运动一样在空中盘旋、移动的人造飞行器,其可用于军事监视和检测空气污染等民用项目。NASA目前正计划使用一种形似向日葵的太空装置,来帮助太空望远镜首次拍摄到清晰的系外行星图像,并以此展开对陌生星球进行探索的最新项目。NASA日前测试了一个“飞碟”形状的设备,相关技术将来可能会用于载人登陆火星任务。NASA将重拾超音速客机。

探索火星方面,“好奇”号提前抵达火星主要任务地点。火星一周内迎来两位地球“来客”, 美国“火星大气与挥发演化”探测器和印度“曼加里安”号火星探测器。“好奇2.0”将携7种装备探秘红色星球。

太空商业活动方面,美国一私人研究团队准备重启已停止科学运作的国际日地探测卫星3号,为将来提供廉价的空间探索服务。美国太空探索技术公司发布了第二代“龙”飞船设计方案,希望新型飞船能于2016年将宇航员送入国际空间站。美国纽约一间私人公司计划于2018年派送飞船前往火星,并于2020年携带火星大气的尘埃样本返回地球。“天鹅座”爆炸,“太空船2号”坠毁,或使美国商业航天计划面临重大考验。
金融危机已经过去7年了,为什么美国不仅没有衰落,反而变得比原来更强?{:soso_e113:}
签证还没办好?
LZ请正面回答您是中国人还是美国人?
难为模拟君了,打这么多汉字。。。
金融危机已经过去7年了,为什么美国不仅没有衰落,反而变得比原来更强?
你那个庙出来的。更强在哪。
我谨对贵国取得的成绩表示祝贺!另问模拟君是住在美国东部4还是西部?这么晚还在加班啊。
斯大林同志对模拟桑出狱表示祝贺
路过,捞分
这叫井喷  没有一个新鲜的
摸你不容易啊!
美国一直很强,一直在创新,一直在引领世界,一直在进步,不知道楼主想说什么
模拟桑,辛苦啦!
噗,这些放十年前有必要大力宣扬吗?

到底是衰落了呢,还是“井喷”了呢{:soso_e113:}
很可惜啊,如此伟大的科技实力就要成为华尔街金融巨鳄的牺牲品了。。。妥妥的体制问题啊。。。政府债台高筑,科研投入只能越来越小
哇,难得见到版宠~ 前排摸摸~
美利坚风景这边独好。请继续,烦请保持领导一百年
创新大国,未来希望。
美国现在是在咋尸啊!
怎么跟我所在的学校的年中总结一样{:soso_e141:}
自由灯塔,人类之光
你有真相,但是你爱国吗?
这些东西放10年前有必要拿出来说么?
模拟桑出狱的思密达,所噶
模拟城市 发表于 2015-1-12 08:45
金融危机已经过去7年了,为什么美国不仅没有衰落,反而变得比原来更强?
大家比烂呗......
这就是鼎鼎大名的  模拟桑?
看看克林顿时期,看看现在,原来更强就是这个概念。。。。。
看了回复才发现是坛宠一枚啊。。。?
看到是坛宠,进来捞一分
楼主,年终奖拿了几美分啊?

看到是坛宠,进来捞一分
这就是鼎鼎大名的  模拟桑?
人类未来就得看美帝啊,独裁的体制也就能 抄抄了
永远都在引领,永远都在超前,2014这样,那么2015呢,16呢?说好的100年呢?可怜的美国人模拟哥,心累吗?
不错不错,科技才是人类的最重要的生产力!无论是美帝还是TG,科技进步才说明这个民族的创新能力,那些说话味道酸酸的可以歇歇了,人家强就是强,得承认,我们承认不足迎头赶上才是实事求是的做法。不服的同学可以说说过去一年,TG取得了哪些科技方面的进步。
由衷赞叹美帝取得的成绩!天文学方面真是美帝不断拓展人类认知的边界。
就算他科技井喷,也没见他给其他国家做什么好事吧,到处伸手,扰乱别国
金融危机已经过去7年了,为什么美国不仅没有衰落,反而变得比原来更强?
美的现在还是全球科技翘楚,这无可争议!
你说的好好的,干嘛话峰一转提什么反而变得更强,你如何得出的,起码也要和金融危机前比比吧。
你说你,这样无理无逻辑的思维跳跃,反而觉得你说得心虚了。
呵呵,你是高级黑吧
模拟城市 发表于 2015-1-12 08:45
金融危机已经过去7年了,为什么美国不仅没有衰落,反而变得比原来更强?

不停的剥削呗
问题是有欧匪这么蠢的国家愿意给美匪当驴当马,
——————这能有什么办法呀


摸摸模拟君,人家也不容易啊
初看上去很高大上,实际好像并没什么本质上的成果