欧洲10亿欧元设计建造第三代引力波望远镜

来源:百度文库 编辑:超级军网 时间:2024/04/28 12:50:20
http://www.coema.org.cn/oenews/industry/20110610/162503.html

 在欧盟向一项设计研究提供300万欧元的资助后,物理学家日前公布了他们的引力波望远镜研制计划,该项目为研究宇宙打开了一扇新的窗口。

  研究人员希望耗资10亿欧元的爱因斯坦望远镜(ET)不但能够探测所谓的时空微脉动——在这10年里,许多探测器都希望能够实现这一目标,而且能够对形成它们的宇宙大灾难作出详细的观测——包括黑洞或中子星融合以及超新星塌陷。

  爱因斯坦望远镜的科学协调人、意大利佩鲁贾市国家核子物理研究所的Michele Punturo表示:“它将提供一幅与质量相关的宇宙补充图像。”

  根据阿尔伯特·爱因斯坦的广义相对论的预测,探测引力波的难度之大是出了名的。

  现阶段的探测器——包括美国的双子LIGO仪器、欧洲的Virgo和GEO600,以及日本的TAMA——迄今为止在这项研究中都是空白,尽管它们已经限制了来自不同电势源的引力释放。

  这些探测器通过让激光束沿着两个数千米长的正交臂反复弹跳而进行工作。

  当一个引力波穿越探测器时,它将压缩一条臂并伸展另一条臂,此时这两条臂所遇到的一部干涉仪将尝试测量这一微小的长度差异——甚至不足一个原子核的宽度。

  LIGO和Virgo目前正在进行版本升级,从而使它们的敏感度至少比原始水平增加10倍。

  研究人员希望这种第二代探测器在2015年联机后,每年能够探测数以万计的电势源。

  Punturo指出:“如果一个来源在1年后仍然没有被发现,那么不是理论就是探测器有毛病了。”

  爱因斯坦望远镜是第三代探测器的第一个代表,其目标是实现另一个10倍改进计划。

  爱因斯坦望远镜的探测臂将有10千米长,它们将被建造于地下100多米深的隧道中。这些隧道实际上将包含以不同频率操作的两部探测器,它们将共同覆盖可在地球上探测到的所有频率——从1赫兹到10千赫。

  研究人员希望,爱因斯坦望远镜的作用能够远远超过简单的电势源探测,以及辨别它们的一些属性。如果幸运的话,它将能够穿越宇宙的历史,回到宇宙微波背景辐射形成之前——当时的宇宙对于电磁辐射而言是不透明的。

  为期3年的爱因斯坦望远镜设计研究将有200多位科学家参与其中。研究人员现在的目标是组建自己的团队,并开始开发修建爱因斯坦望远镜所必需的激光、光学和机械技术。

  Punturo表示:“我们需要将这种概念的采集转化为一部实实在在的装置。”为了实现这一目标,研究人员将需要更多的资金,并且他们也必须同国家资助机构展开微妙的合作过程,从而为爱因斯坦望远镜的建设筹措资金。

引力波概念
  我们都知道电磁波,那是物体的电磁辐射。静止的电磁场辐射电磁波,加速运动的电荷也会辐射电磁波。我们也知道,物体都有引力,会产生引力场。爱因斯坦在发表广义相对论后不久,预言引力场具有波动性质的引力振荡,加速运动的质量(引力源)也辐射引力波。由于电磁波是由光子传递的,爱因斯坦假定引力波是由引力子传递的。

引力波望远镜的发展
  美国在路易斯安那州和华盛顿州建造了两台激光干涉仪引力波观测台,它们相距3000千米。每个观测台上有一个L形真空管探测臂,长4千米,在管的两端和转弯处有反射镜,让激光束在镜面之间来回反射。激光在弯处的镜面上通过干涉产生明暗条纹光带。如果有引力波通过,由于时空畸变,会使相互垂直的探测臂一个伸长、一个缩短,光带因而发生变化。相隔3000千米设两个观测台,是为了排除地球上地震、雷暴和火车行驶、飞机飞行等各种干扰因素,因为这些因素不可能在两地同时发生。这个观测台2002年开始启用,能探测到10~18米的长度变化。但迄今没有探测到引力波。   美、欧科学家计划在2012年发射航天器,利用太空的广阔距离对引力波进行探测。其方案是,将3对探测器送入太空,让它们组成等边三角形,相邻两对探测器之间的距离为500万千米,它们在地球后面以20度的夹角一起绕太阳运行。3对探测器之间用激光测量距离。如果有引力波传来,它会挤压时空,使3对探测器之间的距离发生微小的变化。灵敏的激光可测出一个原子直径大小的位移。由于它们所占的地域比地球上的探测器大得多,因而可能探测到更多的引力波源;灵敏度也更高,或许能探测到宇宙大爆炸时产生的原始引力波。   现在的各种望远镜,都是通过接收电磁波进行宇宙探测的,但是,在宇宙大爆炸后的头100万年中没有电磁辐射;黑洞一般不发射电磁波;中子星、超新星核等致密星体和 超密物质一般电磁辐射都较弱,通过电磁辐射所能揭示的信息很少。但它们却是最强的引力辐射源。由此可见,引力波望远镜与传统望远镜有很强的互补性;还有,引力波与电磁波不同,它可穿透任何物体,也不被任何物体所吸收,来自遥远引力辐射源的引力波,不会损失任何所携带的信息。因此,引力波望远镜可以探测到许多原始信息。一句话,引力波望远镜为我们探测宇宙开设了一个崭新的窗口。
编辑本段引力波望远镜的利弊
  某些极端天体现象,比如两颗恒星级黑洞相互环绕并逐渐靠近,最终合并为一个大黑洞的过程,如果它们的附近极少气体尘埃和其他星体,那么,我们就不可能从电磁辐射中探知这一过程,而这一过程也没有中微子等其他辐射,探测这一过程的唯一办法就是上述过程中辐射出的引力波。

  引力波望远镜的另一好处是它反映的是天体的整体信息,而通常的电磁辐射只反映天体的表层信息,内部的东西几乎是反映不出来的。

  缺点是引力波通常极弱,只有少数的极端天体现象中,涉及的质量极大,物质运动的加速度也极大,而且离我们也不太远时,我们才能探测到引力波。这注定引力波望远镜在可预见的未来不会成为主流的常规的天文探测手段。

http://www.coema.org.cn/oenews/industry/20110610/162503.html

 在欧盟向一项设计研究提供300万欧元的资助后,物理学家日前公布了他们的引力波望远镜研制计划,该项目为研究宇宙打开了一扇新的窗口。

  研究人员希望耗资10亿欧元的爱因斯坦望远镜(ET)不但能够探测所谓的时空微脉动——在这10年里,许多探测器都希望能够实现这一目标,而且能够对形成它们的宇宙大灾难作出详细的观测——包括黑洞或中子星融合以及超新星塌陷。

  爱因斯坦望远镜的科学协调人、意大利佩鲁贾市国家核子物理研究所的Michele Punturo表示:“它将提供一幅与质量相关的宇宙补充图像。”

  根据阿尔伯特·爱因斯坦的广义相对论的预测,探测引力波的难度之大是出了名的。

  现阶段的探测器——包括美国的双子LIGO仪器、欧洲的Virgo和GEO600,以及日本的TAMA——迄今为止在这项研究中都是空白,尽管它们已经限制了来自不同电势源的引力释放。

  这些探测器通过让激光束沿着两个数千米长的正交臂反复弹跳而进行工作。

  当一个引力波穿越探测器时,它将压缩一条臂并伸展另一条臂,此时这两条臂所遇到的一部干涉仪将尝试测量这一微小的长度差异——甚至不足一个原子核的宽度。

  LIGO和Virgo目前正在进行版本升级,从而使它们的敏感度至少比原始水平增加10倍。

  研究人员希望这种第二代探测器在2015年联机后,每年能够探测数以万计的电势源。

  Punturo指出:“如果一个来源在1年后仍然没有被发现,那么不是理论就是探测器有毛病了。”

  爱因斯坦望远镜是第三代探测器的第一个代表,其目标是实现另一个10倍改进计划。

  爱因斯坦望远镜的探测臂将有10千米长,它们将被建造于地下100多米深的隧道中。这些隧道实际上将包含以不同频率操作的两部探测器,它们将共同覆盖可在地球上探测到的所有频率——从1赫兹到10千赫。

  研究人员希望,爱因斯坦望远镜的作用能够远远超过简单的电势源探测,以及辨别它们的一些属性。如果幸运的话,它将能够穿越宇宙的历史,回到宇宙微波背景辐射形成之前——当时的宇宙对于电磁辐射而言是不透明的。

  为期3年的爱因斯坦望远镜设计研究将有200多位科学家参与其中。研究人员现在的目标是组建自己的团队,并开始开发修建爱因斯坦望远镜所必需的激光、光学和机械技术。

  Punturo表示:“我们需要将这种概念的采集转化为一部实实在在的装置。”为了实现这一目标,研究人员将需要更多的资金,并且他们也必须同国家资助机构展开微妙的合作过程,从而为爱因斯坦望远镜的建设筹措资金。

引力波概念
  我们都知道电磁波,那是物体的电磁辐射。静止的电磁场辐射电磁波,加速运动的电荷也会辐射电磁波。我们也知道,物体都有引力,会产生引力场。爱因斯坦在发表广义相对论后不久,预言引力场具有波动性质的引力振荡,加速运动的质量(引力源)也辐射引力波。由于电磁波是由光子传递的,爱因斯坦假定引力波是由引力子传递的。

引力波望远镜的发展
  美国在路易斯安那州和华盛顿州建造了两台激光干涉仪引力波观测台,它们相距3000千米。每个观测台上有一个L形真空管探测臂,长4千米,在管的两端和转弯处有反射镜,让激光束在镜面之间来回反射。激光在弯处的镜面上通过干涉产生明暗条纹光带。如果有引力波通过,由于时空畸变,会使相互垂直的探测臂一个伸长、一个缩短,光带因而发生变化。相隔3000千米设两个观测台,是为了排除地球上地震、雷暴和火车行驶、飞机飞行等各种干扰因素,因为这些因素不可能在两地同时发生。这个观测台2002年开始启用,能探测到10~18米的长度变化。但迄今没有探测到引力波。   美、欧科学家计划在2012年发射航天器,利用太空的广阔距离对引力波进行探测。其方案是,将3对探测器送入太空,让它们组成等边三角形,相邻两对探测器之间的距离为500万千米,它们在地球后面以20度的夹角一起绕太阳运行。3对探测器之间用激光测量距离。如果有引力波传来,它会挤压时空,使3对探测器之间的距离发生微小的变化。灵敏的激光可测出一个原子直径大小的位移。由于它们所占的地域比地球上的探测器大得多,因而可能探测到更多的引力波源;灵敏度也更高,或许能探测到宇宙大爆炸时产生的原始引力波。   现在的各种望远镜,都是通过接收电磁波进行宇宙探测的,但是,在宇宙大爆炸后的头100万年中没有电磁辐射;黑洞一般不发射电磁波;中子星、超新星核等致密星体和 超密物质一般电磁辐射都较弱,通过电磁辐射所能揭示的信息很少。但它们却是最强的引力辐射源。由此可见,引力波望远镜与传统望远镜有很强的互补性;还有,引力波与电磁波不同,它可穿透任何物体,也不被任何物体所吸收,来自遥远引力辐射源的引力波,不会损失任何所携带的信息。因此,引力波望远镜可以探测到许多原始信息。一句话,引力波望远镜为我们探测宇宙开设了一个崭新的窗口。
编辑本段引力波望远镜的利弊
  某些极端天体现象,比如两颗恒星级黑洞相互环绕并逐渐靠近,最终合并为一个大黑洞的过程,如果它们的附近极少气体尘埃和其他星体,那么,我们就不可能从电磁辐射中探知这一过程,而这一过程也没有中微子等其他辐射,探测这一过程的唯一办法就是上述过程中辐射出的引力波。

  引力波望远镜的另一好处是它反映的是天体的整体信息,而通常的电磁辐射只反映天体的表层信息,内部的东西几乎是反映不出来的。

  缺点是引力波通常极弱,只有少数的极端天体现象中,涉及的质量极大,物质运动的加速度也极大,而且离我们也不太远时,我们才能探测到引力波。这注定引力波望远镜在可预见的未来不会成为主流的常规的天文探测手段。