航天科技集团张柏楠代表:我国空间太阳能电站处于试验阶 ...

来源:百度文库 编辑:超级军网 时间:2024/05/04 14:52:58


张柏楠代表:我空间太阳能电站处于试验阶段

2016年03月07日08:31  来源:科技日报  手机看新闻

中国航天科技集团五院载人飞船系统总设计师张柏楠代表6日向科技日报记者透露,五院“钱学森空间技术实验室”团队已开展太阳能电站具体研究工作,目前正处于研究试验阶段。

空间太阳能电站是指在太空中将太阳能转化为电能,通过无线能量传输方式传输到地面,或是直接将太阳光反射到地面、在地面进行发电的系统。目前美国、俄罗斯、日本等国都在开展研究。张柏楠对其发展应用前景十分看好。

“该系统最大的特点是绿色环保。”张柏楠说,“在太空中收集太阳能,对地球环境的影响很小,而且完全不依赖地球资源。”

同时空间电站的发电效率远高于地面太阳能。太空里可以连续接收太阳能,不受季节、昼夜变化等的影响,接收的能量密度高,是地面平均光照功率的7至12倍;同时可以稳定地将能量传输到地面,基本不受大气影响。

目前,世界各国已设计出几十种概念方案,五院团队提出的“多旋转关节空间太阳能电站”方案,获得了2015年世界太阳能卫星设计竞赛第一名。

张柏楠认为,空间电站在技术原理上已没有太大问题。太阳能帆板在卫星上广泛应用,而且近年来,太阳能电池发电效率、微波转化效率等技术取得了很大进步,为该系统的研发奠定了良好基础。但要达到工业应用标准,对发电量要求将很高,至少是兆瓦、G瓦量级,太阳能电池板也可能要用平方公里来计算。

“有专家建议先建一台兆瓦级规模的试验系统,发射到太空开展实验。”他透露。(付毅飞)


http://scitech.people.com.cn/n1/2016/0307/c1007-28177221.html

张柏楠代表:我空间太阳能电站处于试验阶段

2016年03月07日08:31  来源:科技日报  手机看新闻

中国航天科技集团五院载人飞船系统总设计师张柏楠代表6日向科技日报记者透露,五院“钱学森空间技术实验室”团队已开展太阳能电站具体研究工作,目前正处于研究试验阶段。

空间太阳能电站是指在太空中将太阳能转化为电能,通过无线能量传输方式传输到地面,或是直接将太阳光反射到地面、在地面进行发电的系统。目前美国、俄罗斯、日本等国都在开展研究。张柏楠对其发展应用前景十分看好。

“该系统最大的特点是绿色环保。”张柏楠说,“在太空中收集太阳能,对地球环境的影响很小,而且完全不依赖地球资源。”

同时空间电站的发电效率远高于地面太阳能。太空里可以连续接收太阳能,不受季节、昼夜变化等的影响,接收的能量密度高,是地面平均光照功率的7至12倍;同时可以稳定地将能量传输到地面,基本不受大气影响。

目前,世界各国已设计出几十种概念方案,五院团队提出的“多旋转关节空间太阳能电站”方案,获得了2015年世界太阳能卫星设计竞赛第一名。

张柏楠认为,空间电站在技术原理上已没有太大问题。太阳能帆板在卫星上广泛应用,而且近年来,太阳能电池发电效率、微波转化效率等技术取得了很大进步,为该系统的研发奠定了良好基础。但要达到工业应用标准,对发电量要求将很高,至少是兆瓦、G瓦量级,太阳能电池板也可能要用平方公里来计算。

“有专家建议先建一台兆瓦级规模的试验系统,发射到太空开展实验。”他透露。(付毅飞)


http://scitech.people.com.cn/n1/2016/0307/c1007-28177221.html


相关阅读

其实早在2011年7月,当时国内空间太阳能电站研究还处于刚刚起步的阶段。在中国空间技术研究院主办的空间太阳能电站发展技术全国研讨会上,与会专家提出了我国空间太阳能电站发展“路线图”。当时《光明日报》刊文专门介绍了空间太阳能电站的难题与挑战,以及各国的研究、发展情况。原文如下:

你敢想吗?太空建个发电站

1968年美国科学家彼得·格拉赛(Peter Glaser)首先提出了建造空间太阳能电站的构想,其基本思路是:将无比巨大的太阳能电池阵放置在地球轨道上,组成太阳能发电站,将取之不尽、用之不竭的太阳能转化成数千兆瓦级的电能,然后将电能转化成微波能,并利用微波或无线技术传输到地球。

能量转换装置将电能转换成微波或激光等形式(激光也可以直接通过太阳能转化),并利用天线向地面发送能束。有资料称,从理论上说,在阳光充足的地球静止轨道上,每平方米太阳能能产生1336瓦热量,如果在地球静止轨道上部署一条宽度为1000米的太阳能电池阵环带,假定其转换效率为100%,那么,它在一年中接收到的太阳辐射通量差不多等于目前地球上已知可开采石油储量所包含的能量总和。

地面接收系统接收空间太阳能电站发射来的能束,再通过转换装置将其转换成为电能。整个过程经历了太阳能-电能-微波(激光)-电能的能量转变过程。空间太阳能电站的建造和运行过程还需要包括大型的运载系统,空间运输系统,及复杂的后勤保障系统。

请支持独立网站,转发请注明本文链接:http://www.guancha.cn/politics/2016_03_07_353137.shtml

我国空间太阳能电站发展“四步走”设想

第一阶段:2011年-2020年

充分分析空间太阳能电站的应用需求,开展空间太阳能电站系统方案详细设计和关键技术研究,进行关键技术验证。

重点验证无线能量传输技术、高效大功率太阳能发电技术、大型结构的展开组装技术和高压供配电系统,主要有地面大功率无线能量传输试验、地面大型结构展开及装配技术试验、地面对平流层飞艇无线能量传输试验、依托空间站的大型结构展开及装配技术试验等。

第二阶段:2021年-2025年

利用我国的空间站平台,在航天员参与下,进行我国第一个低轨道空间太阳能电站系统研制,在2025年开展系统验证。重点验证大型结构的空间展开及装配,大型空间聚光系统及其控制,大功率电源管理系统,大型结构的姿态控制技术,无线能量传输技术(激光、微波),空间太阳能电站的运行维护管理等。

第三阶段:2026年-2040年

在低轨关键技术验证的基础上,进一步研究经济上和技术上更为可行的空间太阳能电站系统方案和关键技术,突破轨道间大功率电推进技术,研制地球同步轨道验证系统,大约在2030年左右发射,进行空间-地面、空间-空间无线能量传输,开展系统验证,为商业系统的研制提供重要的运行参数。系统运行寿命10年。初步考虑该系统在低轨进行自主空间组装,并利用空间站和航天员进行部分组装工作,同时解决空间装配中出现的问题,组装测试完毕后,整体运送到地球同步轨道。

第四阶段:2036年-2050年

结合验证系统的运行状况,结合技术发展,研制我国第一个商业化空间太阳能电站系统,实现空间太阳能电站商业运行,运行寿命30年以上。

空间太阳能电站面临的巨大挑战

不过,当前建设空间太阳能电站首先是技术难题,对于现有的航天器技术提出了很大挑战:规模大,质量达到万吨以上,比目前的卫星高出4个数量级,需要采用新材料和新型运载技术;面积达到数平方公里以上,比目前的卫星高出6个数量级,需要采用特殊的结构、空间组装和姿态控制技术;功率大,发电功率为吉瓦,比目前的卫星高出6个数量级,需要特别的电源管理和热控技术;寿命长,至少达到30年以上,比目前的卫星高出一倍以上,需要新材料和在轨维护技术;效率高,需要先进的空间太阳能转化技术和微波转化传输技术。

其次是成本问题。有专家估算,建设一个天基太阳能发电站需要耗资3000亿至10000亿美元。因此,成本问题可能是制约空间太阳能电站发展的主要因素。在新概念、新技术和大规模商业化之前,收入难以补偿整个系统的建造和运行成本。

再次是环境影响。虽然空间太阳能电站功率很大,但由于微波能量传输距离远(36000公里),根据微波能量传输特性,实际接收天线的能量密度比较低。

最后是运行问题。空间太阳能电站运行中还有许多问题,其中包括需采取相应措施对波束进行安全控制问题、对于飞行器的影响、空间碎片可能对空间太阳能电站造成局部损害、易攻击性、可能成为空间垃圾等。此外,还有轨道和频率、产能、发射能力等问题。

域外方案

美国:1979 SPS基准系统,这是第一个比较完整的空间太阳能电站的系统设计方案,由美国在1979年完成,以全美国一半的发电量为目标进行设计。其设计方案为在地球静止轨道上布置60个发电能力各为5吉瓦的发电卫星。

集成对称聚光系统:NASA在20世纪90年代末的SERT研究计划中提出的方案。采用了位于桅杆两边的大型蚌壳状聚光器将太阳能反射到两个位于中央的光伏阵列。聚光器面向太阳,桅杆、电池阵、发射阵作为一体,旋转对地。聚光器与桅杆间相互旋转以应对每天的轨道变化和季节变化。

日本:分布式绳系卫星系统,为减小单个模块的复杂性和重量,日本科学家提出了分布式绳系卫星的概念。其基本单元由尺寸为100米×95米的单元板和卫星平台组成,单元板和卫星平台间采用四根2千米~10千米的绳系悬挂在一起。单元板是由太阳能电池、微波转换装置和发射天线组成的夹层结构板,共包含3800个模块。每个单元板的总重约为42.5吨,微波能量传输功率为2.1兆瓦。由25块单元板组成子板,25块子板组成整个系统。该设计方案的模块化设计思想非常清晰,有利于系统的组装、维护。但系统的质量仍显巨大,特别是利用效率较低。

欧洲:太阳帆塔,欧洲在1998年“空间及探索利用的系统概念、结构和技术研究”计划中提出了欧洲太阳帆塔的概念。该方案基于美国提出的太阳塔概念,并采用许多新技术。其中最主要的是采用了可展开的轻型结构——太阳帆。其可以大大降低系统的总重量、减小系统的装配难度。其中每一块太阳帆电池阵为一个模块,尺寸为150米×150米,发射入轨后自动展开,在低地轨道进行系统组装,再通过电推力器转移至地球同步轨道。由于该方案采用梯度稳定方式实现发射天线对地球定向,所以太阳帆板无法实现持续对日定向。

http://www.guancha.cn/politics/2016_03_07_353137.shtml

相关阅读

其实早在2011年7月,当时国内空间太阳能电站研究还处于刚刚起步的阶段。在中国空间技术研究院主办的空间太阳能电站发展技术全国研讨会上,与会专家提出了我国空间太阳能电站发展“路线图”。当时《光明日报》刊文专门介绍了空间太阳能电站的难题与挑战,以及各国的研究、发展情况。原文如下:

你敢想吗?太空建个发电站

1968年美国科学家彼得·格拉赛(Peter Glaser)首先提出了建造空间太阳能电站的构想,其基本思路是:将无比巨大的太阳能电池阵放置在地球轨道上,组成太阳能发电站,将取之不尽、用之不竭的太阳能转化成数千兆瓦级的电能,然后将电能转化成微波能,并利用微波或无线技术传输到地球。

能量转换装置将电能转换成微波或激光等形式(激光也可以直接通过太阳能转化),并利用天线向地面发送能束。有资料称,从理论上说,在阳光充足的地球静止轨道上,每平方米太阳能能产生1336瓦热量,如果在地球静止轨道上部署一条宽度为1000米的太阳能电池阵环带,假定其转换效率为100%,那么,它在一年中接收到的太阳辐射通量差不多等于目前地球上已知可开采石油储量所包含的能量总和。

地面接收系统接收空间太阳能电站发射来的能束,再通过转换装置将其转换成为电能。整个过程经历了太阳能-电能-微波(激光)-电能的能量转变过程。空间太阳能电站的建造和运行过程还需要包括大型的运载系统,空间运输系统,及复杂的后勤保障系统。

请支持独立网站,转发请注明本文链接:http://www.guancha.cn/politics/2016_03_07_353137.shtml

我国空间太阳能电站发展“四步走”设想

第一阶段:2011年-2020年

充分分析空间太阳能电站的应用需求,开展空间太阳能电站系统方案详细设计和关键技术研究,进行关键技术验证。

重点验证无线能量传输技术、高效大功率太阳能发电技术、大型结构的展开组装技术和高压供配电系统,主要有地面大功率无线能量传输试验、地面大型结构展开及装配技术试验、地面对平流层飞艇无线能量传输试验、依托空间站的大型结构展开及装配技术试验等。

第二阶段:2021年-2025年

利用我国的空间站平台,在航天员参与下,进行我国第一个低轨道空间太阳能电站系统研制,在2025年开展系统验证。重点验证大型结构的空间展开及装配,大型空间聚光系统及其控制,大功率电源管理系统,大型结构的姿态控制技术,无线能量传输技术(激光、微波),空间太阳能电站的运行维护管理等。

第三阶段:2026年-2040年

在低轨关键技术验证的基础上,进一步研究经济上和技术上更为可行的空间太阳能电站系统方案和关键技术,突破轨道间大功率电推进技术,研制地球同步轨道验证系统,大约在2030年左右发射,进行空间-地面、空间-空间无线能量传输,开展系统验证,为商业系统的研制提供重要的运行参数。系统运行寿命10年。初步考虑该系统在低轨进行自主空间组装,并利用空间站和航天员进行部分组装工作,同时解决空间装配中出现的问题,组装测试完毕后,整体运送到地球同步轨道。

第四阶段:2036年-2050年

结合验证系统的运行状况,结合技术发展,研制我国第一个商业化空间太阳能电站系统,实现空间太阳能电站商业运行,运行寿命30年以上。

空间太阳能电站面临的巨大挑战

不过,当前建设空间太阳能电站首先是技术难题,对于现有的航天器技术提出了很大挑战:规模大,质量达到万吨以上,比目前的卫星高出4个数量级,需要采用新材料和新型运载技术;面积达到数平方公里以上,比目前的卫星高出6个数量级,需要采用特殊的结构、空间组装和姿态控制技术;功率大,发电功率为吉瓦,比目前的卫星高出6个数量级,需要特别的电源管理和热控技术;寿命长,至少达到30年以上,比目前的卫星高出一倍以上,需要新材料和在轨维护技术;效率高,需要先进的空间太阳能转化技术和微波转化传输技术。

其次是成本问题。有专家估算,建设一个天基太阳能发电站需要耗资3000亿至10000亿美元。因此,成本问题可能是制约空间太阳能电站发展的主要因素。在新概念、新技术和大规模商业化之前,收入难以补偿整个系统的建造和运行成本。

再次是环境影响。虽然空间太阳能电站功率很大,但由于微波能量传输距离远(36000公里),根据微波能量传输特性,实际接收天线的能量密度比较低。

最后是运行问题。空间太阳能电站运行中还有许多问题,其中包括需采取相应措施对波束进行安全控制问题、对于飞行器的影响、空间碎片可能对空间太阳能电站造成局部损害、易攻击性、可能成为空间垃圾等。此外,还有轨道和频率、产能、发射能力等问题。

域外方案

美国:1979 SPS基准系统,这是第一个比较完整的空间太阳能电站的系统设计方案,由美国在1979年完成,以全美国一半的发电量为目标进行设计。其设计方案为在地球静止轨道上布置60个发电能力各为5吉瓦的发电卫星。

集成对称聚光系统:NASA在20世纪90年代末的SERT研究计划中提出的方案。采用了位于桅杆两边的大型蚌壳状聚光器将太阳能反射到两个位于中央的光伏阵列。聚光器面向太阳,桅杆、电池阵、发射阵作为一体,旋转对地。聚光器与桅杆间相互旋转以应对每天的轨道变化和季节变化。

日本:分布式绳系卫星系统,为减小单个模块的复杂性和重量,日本科学家提出了分布式绳系卫星的概念。其基本单元由尺寸为100米×95米的单元板和卫星平台组成,单元板和卫星平台间采用四根2千米~10千米的绳系悬挂在一起。单元板是由太阳能电池、微波转换装置和发射天线组成的夹层结构板,共包含3800个模块。每个单元板的总重约为42.5吨,微波能量传输功率为2.1兆瓦。由25块单元板组成子板,25块子板组成整个系统。该设计方案的模块化设计思想非常清晰,有利于系统的组装、维护。但系统的质量仍显巨大,特别是利用效率较低。

欧洲:太阳帆塔,欧洲在1998年“空间及探索利用的系统概念、结构和技术研究”计划中提出了欧洲太阳帆塔的概念。该方案基于美国提出的太阳塔概念,并采用许多新技术。其中最主要的是采用了可展开的轻型结构——太阳帆。其可以大大降低系统的总重量、减小系统的装配难度。其中每一块太阳帆电池阵为一个模块,尺寸为150米×150米,发射入轨后自动展开,在低地轨道进行系统组装,再通过电推力器转移至地球同步轨道。由于该方案采用梯度稳定方式实现发射天线对地球定向,所以太阳帆板无法实现持续对日定向。

http://www.guancha.cn/politics/2016_03_07_353137.shtml
明修栈道暗度陈仓  。手动龇牙
这法回来的微波不会把人烤熟?
无线传输能量,很高端的样子!现代科技,脑子不好使了!
这么大的面板,碰上太空垃圾,想机动规避,很难吧?
无状态 发表于 2016-3-7 23:26
这么大的面板,碰上太空垃圾,想机动规避,很难吧?
所以清除太空垃圾也是各国研究的课题
犯强汗者远必诛 发表于 2016-3-7 22:07
明修栈道暗度陈仓  。手动龇牙
太空军事化的帽子还自己往头上扣

这项技术很多国家都在做,具备这个能力的潜在国家不少。。。
骏马 发表于 2016-3-7 23:01
无线传输能量,很高端的样子!现代科技,脑子不好使了!

无线电波传送能量,神舟6号曾实验过。
你把无线电波想成光就好理解了,激光照射在卫星的太阳能电池板上不就是把电能送到卫星上了。
    我觉得这个东西的难点在于送电技术,要是真能微波送电,或者无线送电的话,这个东西出现的可能性就比较大了。
太阳能激光炮
我觉得吧,根本用不着传送回来发电。能量聚焦后发射高强度微波电磁辐射对着敌人的卫星,导弹,航天器,飞行器甚至地面海上目标挨个biu吧。
这么大的太阳帆,矫姿是个很麻烦的问题,太阳风的作用导致需要很频繁的矫姿
金霸王好像有种用手机信号充电的电池,不过充电速度超级慢
m这么大电力 供应地面是开玩笑  实验下理论可行性就是了  能在太空大批熔炼合金  高强度烧焊  那就可以做太空工厂 才是真正目的 例如  国际空间站退役后  买回来  回收金属 制作结构件  衍架  真空甚至有正常气压的仓库车间
这么大的太阳帆,矫姿是个很麻烦的问题,太阳风的作用导致需要很频繁的矫姿
都74号了?
得了,直接发射到近太阳轨道,效率更高,发电后转化成高频电磁波或激光传回地球
法力咆哮 发表于 2016-3-8 00:07
我觉得这个东西的难点在于送电技术,要是真能微波送电,或者无线送电的话,这个东西出现的可能性就比较 ...
诺基亚手机就出过无线充电,实际的问题是传播途中耗损比较严重。
面积超大的话,看哪个国家不爽,就停在他们国家上空,妥妥的阴天
这么大的太阳帆,矫姿是个很麻烦的问题,太阳风的作用导致需要很频繁的矫姿
装几个电推调姿呗,这么大个电站点肯定是不愁的
superxj46 发表于 2016-3-8 11:11
装几个电推调姿呗,这么大个电站点肯定是不愁的
无工质电推?
如果对着奥巴马照射,会烤熟吗?
如果发回来的能量,直接投射到人/坦克/飞机/军舰/航母上,会有什么效果呀……………………
无工质电推?
就现在那些就行,定期上去补充呗,比补充火箭燃料少多了,这种能力都没有,就别想着搞太空电站了
superxj46 发表于 2016-3-8 15:30
就现在那些就行,定期上去补充呗,比补充火箭燃料少多了,这种能力都没有,就别想着搞太空电站了
太阳帆大到这种程度,承受的太阳风的力量会很大,长期不断调姿工质消耗量会非常大,把这些燃料发射上去耗资巨大,发电成本会很高,得不偿失
这么大的面板,碰上太空垃圾,想机动规避,很难吧?
同步轨道没什么拉圾
太阳帆大到这种程度,承受的太阳风的力量会很大,长期不断调姿工质消耗量会非常大,把这些燃料发射上去耗 ...
成本是相对的,等不可再生能源消耗完,核聚变又无法突破,那时候送燃料上去的成本就不会有人说高了,反过来,要是核聚变搞成了,脑子有病才会去搞太空太阳能电站
  以后战争简单了,看谁不顺眼把天线对准发生大功率微波束,鸡犬不留,全光光