zt:碳纤维复合材料在航空航天领域的应用浅析(一).基础 ...

来源:百度文库 编辑:超级军网 时间:2024/04/30 02:45:04
作者:兵器迷的天空,博客见下文
发表于:2013-04-19 08:18:55

丝丝入扣凭谁取,片片出云任我翔

碳纤维复合材料在航空航天领域的应用浅析(一).基础篇


最近一个时期,坛子里的不少帖子,技术性和专业性有所增强,真是让人高兴。什么是素质,哪个叫水平,这些概念应当得到正确的建立。耸人听闻的标题党、子虚乌有的意淫贴、极端互骂的撒泼族,无论如何,都跟不上、配不上中国军工的高速发展。

客观探讨、理性分析、观点多元、相互学习的趋势,才是中华网军事频道的幸事。

看热闹,更看门道;知其然,亦知其所以然,也才是咱广大军迷们的骄傲。

为了向各位专家型大虾致敬,这一次,兵器迷试着写一点专业性更强的东东,和大家分享。

啥叫专业性?就是故事性不强,而专业术语多。这样的帖子,没啥水分,比较干。您吃着,可能有点拉嗓子。呵呵,没关系。兵器迷的描述,尽量往通俗方向走,而且咱把大段的干货,切成几部分,分次发贴。一次别招呼太多,怕噎着了,呵呵。

碳纤维复合材料的基本概念
说起材料,似乎挺复杂的,其实不尽然。大家肯定都听说过石器时代、铜器时代和铁器时代。这很通俗、又很清楚的表明了人类历史发展与材料的关系。到今天,全球材料结构中仍然有有大约一半是钢铁或其合金,从这个意义上讲,我们现在仍然处于铁器时代。

一种用于结构的好材料,一般应具有较大的强度,或者外力作用下发生形变相对较小,或者重量较轻。而有时候,我们要求材料必须同时具备强度高、变形小和重量低这三种特性。因此,材料科学领域提出了比强度和比模量的概念。

比强度(specific strength)是材料的强度(断开时单位面积所受的力)除以其密度。又被称为强度-重量比。比强度高,简单的说,就是材料又要结实,又要轻。

举个例子来说,比普通钢强度高7倍的合金钢,够结实。可是太重。要用合金钢增加结构强度,就必须同时增加重量,这对需要高速运动的物体,意义就不大了。因此我们说,合金钢的比强度还是不够高。

比模量(specific modulus)是材料的模量(在受力状态下的应力与应变之比)除以其密度,又称劲度-质量比。比模量高,简单的说,就是材料又要变形小,又要轻。

各种工程材料,比如木材、铝、钢,它们的比强度差别很大,但比模量其实都差不多,仅仅从比模量角度,他们之间相互替代的意义也并不大。

强度高、变形小、重量低,什么地方会用到这样的材料呢?

对了,就是航空和航天工业。飞行器的运动速度高,过载大,对材料强度和变形有严格要求。而且,商用飞机每减重一公斤,一年就能节约3000美元的燃料。远程火箭、太空飞船每减重一公斤,就能节约10,000美元的燃料。能够减少重量,就能够增加有效载荷,降低飞行成本。因此高速飞行领域对材料重量是很敏感的。

当然,大家可以联想到,航空航天领域的材料,还需要一个特质,就是耐高温。

有朋友说:那钛合金呢?没错,钛合金确实比钢铁更加符合飞行器的要求。但问题是钛资源很少,开采、提炼和加工又很麻烦,因此钛合金的价格相当昂贵。这部分的限制了钛的大规模商用,甚至是大规模军用。对于钛合金,兵器迷将来另有专贴分析,这里就不赘述了。

强度高、变形小、重量低、耐高温、不太贵。这五个要求像是密集的交叉火力,把绝大部分已知材料封杀殆尽。就在这个时候,咱们故事的主角,碳纤维复合材料,终于登场了。

碳纤维,指碳的重量占 90%以上的纤维状碳材料。碳纤维与树脂、金属、陶瓷等基体复合,制成的材料,就是碳纤维复合材料(CFRP)。

图1 碳纤维布





碳纤维复材中最重要的碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。其比模量比钢和铝合金高5倍,比强度要高3倍。而碳纤维的比重,一般在1.6左右,是铝的二分之一,钢的五分之一。碳在各种溶剂中不溶解,在隔绝空气的惰性环境中(常压下),在高温时也不会熔融,而且是在2000摄氏度以上唯一强度不下降的已知材料。只有在10Mpa压力和3000K 以上高温条件下,才不经液相直接升华。在密度、刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,CFRP都具有很高的优势。

东西是好东西。可在现代化学工业诞生之前,人们却一直以为,碳产品的脆性非常大,碳纤维也很难做出来。就是好不容易做出来了,力学性能又极差。因此并没有认识到这是个宝贝。碳纤维的利用,可以追溯到1880年,那个以发明灯泡而著名的爱迪生,申请专利,提出利用碳纤维作为电灯的灯丝,后来因为钨丝的替代而不了了之。此后关于碳纤维及其复合材料的研发,在很长时间处于停滞状态。直至二战之后,美国和日本为主的研发工作陆续获得突破,才终于迎来了碳纤维的春天。

1950年,美国Wright-Patterson空军基地开始研究用人造丝制造碳纤维,并得到了力学性能优良的碳纤维。1967年,美国Uninon Carbide公司已经能够供应弹性模量为2.8-3.5×106公斤/厘米2的石墨纱。1969年,日本东丽公司研制成功特殊的聚丙烯腈共聚PAN纤维,并结合Uninon Carbide公司的碳化技术,生产出了比强度和比模量都很高的碳纤维。此后至今,东丽公司一直是首屈一指的高性能碳纤维供应商,产量居世界首位。其与日本东邦和三菱人造丝三家日本公司,生产世界70%以上的军用碳纤维,代表着当今高性能碳纤维的最高水平。而以Akzo和Zoltek为代表的美国公司,则把持着低端碳纤维市场的主要份额。

对了。在此,顺便解释一个有朋友问过兵器迷的问题,就是大家经常听说的T300,T800这些碳纤维究竟是什么意思。其实,就是以日本东丽公司TORYA的首字母命名的碳纤维原丝的品级。

表1 东丽公司碳纤维品级性能表



补充一句:在理论上,碳纤维的抗拉强度可能达到180Gpa,实验室碳纤维最高抗拉强度已达到9.03 Gpa,未来有可能做到20Gpa。

兵器迷叹口气,日本在高性能碳纤维和其他诸多领域,能够在基础研究、产品研发、市场占有和行业标准这四方面独占鳌头,成为一个行业的领导者。而放眼望去,中国,能够做到如此地步的,又有几何?军工领域尚在追赶,暂且不谈;就是民用领域,除了袁隆平的杂交水稻,这个GDP规模第二的国家在行业领先方面似乎也是寥若星辰。大而无当,大而不强,实积弊已久,国人自强自精之路,尚在漫漫。

书归正传。

碳纤维的应用,其实可以分为两个大的分支。即高端军用领域的小丝束碳纤维和低端民用领域的大丝束碳纤维。

对不住了,材料领域的术语就是多,兵器迷一样挠头。呵呵,各位耐心点看吧。

碳纤维的丝束以K表示,1K表示一个丝束含1000根碳纤维,3K就是3000根。一般来讲,24K以下为小丝束(small tow), 24K以上的为大丝束(large tow)。

航空航天领域,特别是军用航空领域,在飞机结构上一般采用的是小丝束碳纤维复材,以3K的碳纤维为主。通常小丝束碳纤维的生产必须采用价格昂贵的特种聚丙烯睛PAN原丝,而且这些特种PAN原丝的生产技术是高度保密的,每家公司都有自己的专利技术。原丝制备技术高度保密,不出售,不转让。小丝束碳纤维产品的市场容量相对小,目前主要用于军工产品。

而大丝束碳纤维,能够以便宜而且公开出售的民用聚丙烯作为原料,制备碳纤维。因此,价格优势非常明显。举个例子,2012年的国内碳纤维市场,48K的只有一百多人人民币一公斤,24K的二百多,12K的三四百,到3K就要七八百,1K的则高达三四千元一公斤。

20世纪90年代中期以后,世界碳纤维发展的最大特点,是大丝束碳纤维获得重大突破。美国Zoltek公司近年来在PAN原丝的研究上取得了突破,成功地采用一般纺织工业用的聚丙烯,生产性能与T300基本相当的PAN-EX33碳纤维。

看到这里,那位问了:那能不能用便宜的大丝束产品,替代昂贵的小丝素产品呢?
根据网上公开的材料,沈阳飞机设计研究所与北京航空材料研究院,早在“十五”期间,就展开了大丝束碳纤维复合材料在飞机上的应用研究工作。通过美国Zoltek的48K大丝束与东丽T300的3K小丝束的对比试验(见表2),证明了在强度性能上,二者差异不大。但在模量性能上,特别是纵向拉伸和纵向压缩模量上,大丝束比小丝束低15%左右。因此,目前大丝束虽然便宜,却尚难以用到军机的主承力构件或者次承力构件上,但可以在通用航空领域、无人机和其他民用领域大显身手。

表2     48K大丝束与3K小丝素性能对比试验数据




用于飞机结构的小丝束产品,属于战略性物资,国外对华禁运,所以高层相当重视,现在也是战略重点。此外在工业应用领域内的低成本大丝束碳纤维,过去重视不太够,现在都在往这个方向努力,但是尚未达到产业化的程度。从需求上看,碳纤维从1950年代主要应用在火箭、宇航及航空等尖端科学,到1980年代被广泛应用于纺织、化工机械、建筑、风机叶片及医学领域。比如,在体育领域,碳纤维主要应用于高尔夫棒、网球拍、赛车、弓箭、跳竿、冰球棒、游艇、赛艇、滑翔机、人力飞机、帆船桅杆、摩托车及登山用品,如登山杖、滑雪杖、攀岩头盔等。国内各种应用占碳纤维率需求比例,大致分别为工业60%、体育30%,航空10%,因此从推动产业升级的角度来说,大丝束碳纤维,无疑具有更加广阔的商业前景。

既然碳纤维的应用这么广,那咱中国人,能生产出什么样的碳纤维和碳纤维复合材料呢?

欲知后事如何,且听下回——《工艺篇》分解。

注:所有资料来自于互联网公开报道和公开出版物,如:
《碳纤维的制造和应用》
《碳纤维制造工艺》
《大丝束碳纤维应用研究》
《飞机复合材料构件详解》
《中国碳纤维工业现状和碳纤维应用》
   本文还引用了航空制造网的信息和图片,在此一并致谢!
更多文章,请见个人博客

http://blog.sina.com.cn/s/articlelist_1455885643_0_1.html





作者:兵器迷的天空,博客见下文
发表于:2013-04-19 08:18:55

丝丝入扣凭谁取,片片出云任我翔

碳纤维复合材料在航空航天领域的应用浅析(一).基础篇


最近一个时期,坛子里的不少帖子,技术性和专业性有所增强,真是让人高兴。什么是素质,哪个叫水平,这些概念应当得到正确的建立。耸人听闻的标题党、子虚乌有的意淫贴、极端互骂的撒泼族,无论如何,都跟不上、配不上中国军工的高速发展。

客观探讨、理性分析、观点多元、相互学习的趋势,才是中华网军事频道的幸事。

看热闹,更看门道;知其然,亦知其所以然,也才是咱广大军迷们的骄傲。

为了向各位专家型大虾致敬,这一次,兵器迷试着写一点专业性更强的东东,和大家分享。

啥叫专业性?就是故事性不强,而专业术语多。这样的帖子,没啥水分,比较干。您吃着,可能有点拉嗓子。呵呵,没关系。兵器迷的描述,尽量往通俗方向走,而且咱把大段的干货,切成几部分,分次发贴。一次别招呼太多,怕噎着了,呵呵。

碳纤维复合材料的基本概念
说起材料,似乎挺复杂的,其实不尽然。大家肯定都听说过石器时代、铜器时代和铁器时代。这很通俗、又很清楚的表明了人类历史发展与材料的关系。到今天,全球材料结构中仍然有有大约一半是钢铁或其合金,从这个意义上讲,我们现在仍然处于铁器时代。

一种用于结构的好材料,一般应具有较大的强度,或者外力作用下发生形变相对较小,或者重量较轻。而有时候,我们要求材料必须同时具备强度高、变形小和重量低这三种特性。因此,材料科学领域提出了比强度和比模量的概念。

比强度(specific strength)是材料的强度(断开时单位面积所受的力)除以其密度。又被称为强度-重量比。比强度高,简单的说,就是材料又要结实,又要轻。

举个例子来说,比普通钢强度高7倍的合金钢,够结实。可是太重。要用合金钢增加结构强度,就必须同时增加重量,这对需要高速运动的物体,意义就不大了。因此我们说,合金钢的比强度还是不够高。

比模量(specific modulus)是材料的模量(在受力状态下的应力与应变之比)除以其密度,又称劲度-质量比。比模量高,简单的说,就是材料又要变形小,又要轻。

各种工程材料,比如木材、铝、钢,它们的比强度差别很大,但比模量其实都差不多,仅仅从比模量角度,他们之间相互替代的意义也并不大。

强度高、变形小、重量低,什么地方会用到这样的材料呢?

对了,就是航空和航天工业。飞行器的运动速度高,过载大,对材料强度和变形有严格要求。而且,商用飞机每减重一公斤,一年就能节约3000美元的燃料。远程火箭、太空飞船每减重一公斤,就能节约10,000美元的燃料。能够减少重量,就能够增加有效载荷,降低飞行成本。因此高速飞行领域对材料重量是很敏感的。

当然,大家可以联想到,航空航天领域的材料,还需要一个特质,就是耐高温。

有朋友说:那钛合金呢?没错,钛合金确实比钢铁更加符合飞行器的要求。但问题是钛资源很少,开采、提炼和加工又很麻烦,因此钛合金的价格相当昂贵。这部分的限制了钛的大规模商用,甚至是大规模军用。对于钛合金,兵器迷将来另有专贴分析,这里就不赘述了。

强度高、变形小、重量低、耐高温、不太贵。这五个要求像是密集的交叉火力,把绝大部分已知材料封杀殆尽。就在这个时候,咱们故事的主角,碳纤维复合材料,终于登场了。

碳纤维,指碳的重量占 90%以上的纤维状碳材料。碳纤维与树脂、金属、陶瓷等基体复合,制成的材料,就是碳纤维复合材料(CFRP)。

图1 碳纤维布





碳纤维复材中最重要的碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。其比模量比钢和铝合金高5倍,比强度要高3倍。而碳纤维的比重,一般在1.6左右,是铝的二分之一,钢的五分之一。碳在各种溶剂中不溶解,在隔绝空气的惰性环境中(常压下),在高温时也不会熔融,而且是在2000摄氏度以上唯一强度不下降的已知材料。只有在10Mpa压力和3000K 以上高温条件下,才不经液相直接升华。在密度、刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,CFRP都具有很高的优势。

东西是好东西。可在现代化学工业诞生之前,人们却一直以为,碳产品的脆性非常大,碳纤维也很难做出来。就是好不容易做出来了,力学性能又极差。因此并没有认识到这是个宝贝。碳纤维的利用,可以追溯到1880年,那个以发明灯泡而著名的爱迪生,申请专利,提出利用碳纤维作为电灯的灯丝,后来因为钨丝的替代而不了了之。此后关于碳纤维及其复合材料的研发,在很长时间处于停滞状态。直至二战之后,美国和日本为主的研发工作陆续获得突破,才终于迎来了碳纤维的春天。

1950年,美国Wright-Patterson空军基地开始研究用人造丝制造碳纤维,并得到了力学性能优良的碳纤维。1967年,美国Uninon Carbide公司已经能够供应弹性模量为2.8-3.5×106公斤/厘米2的石墨纱。1969年,日本东丽公司研制成功特殊的聚丙烯腈共聚PAN纤维,并结合Uninon Carbide公司的碳化技术,生产出了比强度和比模量都很高的碳纤维。此后至今,东丽公司一直是首屈一指的高性能碳纤维供应商,产量居世界首位。其与日本东邦和三菱人造丝三家日本公司,生产世界70%以上的军用碳纤维,代表着当今高性能碳纤维的最高水平。而以Akzo和Zoltek为代表的美国公司,则把持着低端碳纤维市场的主要份额。

对了。在此,顺便解释一个有朋友问过兵器迷的问题,就是大家经常听说的T300,T800这些碳纤维究竟是什么意思。其实,就是以日本东丽公司TORYA的首字母命名的碳纤维原丝的品级。

表1 东丽公司碳纤维品级性能表



补充一句:在理论上,碳纤维的抗拉强度可能达到180Gpa,实验室碳纤维最高抗拉强度已达到9.03 Gpa,未来有可能做到20Gpa。

兵器迷叹口气,日本在高性能碳纤维和其他诸多领域,能够在基础研究、产品研发、市场占有和行业标准这四方面独占鳌头,成为一个行业的领导者。而放眼望去,中国,能够做到如此地步的,又有几何?军工领域尚在追赶,暂且不谈;就是民用领域,除了袁隆平的杂交水稻,这个GDP规模第二的国家在行业领先方面似乎也是寥若星辰。大而无当,大而不强,实积弊已久,国人自强自精之路,尚在漫漫。

书归正传。

碳纤维的应用,其实可以分为两个大的分支。即高端军用领域的小丝束碳纤维和低端民用领域的大丝束碳纤维。

对不住了,材料领域的术语就是多,兵器迷一样挠头。呵呵,各位耐心点看吧。

碳纤维的丝束以K表示,1K表示一个丝束含1000根碳纤维,3K就是3000根。一般来讲,24K以下为小丝束(small tow), 24K以上的为大丝束(large tow)。

航空航天领域,特别是军用航空领域,在飞机结构上一般采用的是小丝束碳纤维复材,以3K的碳纤维为主。通常小丝束碳纤维的生产必须采用价格昂贵的特种聚丙烯睛PAN原丝,而且这些特种PAN原丝的生产技术是高度保密的,每家公司都有自己的专利技术。原丝制备技术高度保密,不出售,不转让。小丝束碳纤维产品的市场容量相对小,目前主要用于军工产品。

而大丝束碳纤维,能够以便宜而且公开出售的民用聚丙烯作为原料,制备碳纤维。因此,价格优势非常明显。举个例子,2012年的国内碳纤维市场,48K的只有一百多人人民币一公斤,24K的二百多,12K的三四百,到3K就要七八百,1K的则高达三四千元一公斤。

20世纪90年代中期以后,世界碳纤维发展的最大特点,是大丝束碳纤维获得重大突破。美国Zoltek公司近年来在PAN原丝的研究上取得了突破,成功地采用一般纺织工业用的聚丙烯,生产性能与T300基本相当的PAN-EX33碳纤维。

看到这里,那位问了:那能不能用便宜的大丝束产品,替代昂贵的小丝素产品呢?
根据网上公开的材料,沈阳飞机设计研究所与北京航空材料研究院,早在“十五”期间,就展开了大丝束碳纤维复合材料在飞机上的应用研究工作。通过美国Zoltek的48K大丝束与东丽T300的3K小丝束的对比试验(见表2),证明了在强度性能上,二者差异不大。但在模量性能上,特别是纵向拉伸和纵向压缩模量上,大丝束比小丝束低15%左右。因此,目前大丝束虽然便宜,却尚难以用到军机的主承力构件或者次承力构件上,但可以在通用航空领域、无人机和其他民用领域大显身手。

表2     48K大丝束与3K小丝素性能对比试验数据




用于飞机结构的小丝束产品,属于战略性物资,国外对华禁运,所以高层相当重视,现在也是战略重点。此外在工业应用领域内的低成本大丝束碳纤维,过去重视不太够,现在都在往这个方向努力,但是尚未达到产业化的程度。从需求上看,碳纤维从1950年代主要应用在火箭、宇航及航空等尖端科学,到1980年代被广泛应用于纺织、化工机械、建筑、风机叶片及医学领域。比如,在体育领域,碳纤维主要应用于高尔夫棒、网球拍、赛车、弓箭、跳竿、冰球棒、游艇、赛艇、滑翔机、人力飞机、帆船桅杆、摩托车及登山用品,如登山杖、滑雪杖、攀岩头盔等。国内各种应用占碳纤维率需求比例,大致分别为工业60%、体育30%,航空10%,因此从推动产业升级的角度来说,大丝束碳纤维,无疑具有更加广阔的商业前景。

既然碳纤维的应用这么广,那咱中国人,能生产出什么样的碳纤维和碳纤维复合材料呢?

欲知后事如何,且听下回——《工艺篇》分解。

注:所有资料来自于互联网公开报道和公开出版物,如:
《碳纤维的制造和应用》
《碳纤维制造工艺》
《大丝束碳纤维应用研究》
《飞机复合材料构件详解》
《中国碳纤维工业现状和碳纤维应用》
   本文还引用了航空制造网的信息和图片,在此一并致谢!
更多文章,请见个人博客

http://blog.sina.com.cn/s/articlelist_1455885643_0_1.html





挺好的科普啊,赞一个
慢慢看,,
好贴。赞一个。