询问四代核弹进展如何,以及能否使用激光点燃钍堆来解决 ...

来源:百度文库 编辑:超级军网 时间:2024/04/28 14:03:04


现在中国深受能源苦恼,而核聚变又遥遥无期。能不能使用钍堆作为未来中国的主要能源。
钍堆要产生裂变需要中子,而中子可以通过激光产生。那能不能使用神光系统作为钍堆的点火装置。来点燃钍堆,当神光体制,中子用完,钍堆自然停止裂变。

下面是我查找的激光和中子的资料,好像这些从理论到装置tg都是世界领先。

中国著名核物理学家王淦昌在一九六十四年就提出激光核聚变的初步概 念,成为国际上最早独立提出这一概念的科学家之一。此后,中国开始了有系统的 激光核聚变研究。

   一九七三年,中国科学家采用一路激光驱动氘冰,在实验中观察到了中子:一九七 四年采用一路激光驱动聚氘乙烯靶发生核反应,并在实验中观察到氘氘反应产生的 中子。

   一九八六年,中国采用直接驱动方式使氘氚玻璃靶球出中子,接着在一九九○到一 九九二年间通过实验,用间接驱动方式事先热核聚变反应,观察到了热核中子。 中国著名物理学家于敏及其领导的一批中国科学家在七十年代中期就提出了激光通 过射口,打进重金属外壳包围的空腔,以X光辐射驱动方式事先激光聚变的概念, 并提出了在柱形黑腔中心放置靶丸的结构设计。中国在七十年代末到八十年代建造 了自己的用於激光核聚变研究的激光器--神光装置。





福岛核危机,让全世界对核电安全充满了担忧。德国等一些国家甚至宣布要在不久的未来放弃使用核能。

  寻找更清洁、更安全的能源获得方式,成为人们更加关心的问题。不久前,英国《每日邮报》报道说,世界上已知的钍元素储量可以至少为全球提供1万年的能源支持。目前,英国科学家们已经在曼彻斯特南部的柴郡平原,建起了一个用于研究钍的小型加速器——EMMA,目的是寻求用钍代替铀作为新型核燃料的方式

  为解决人类未来的能源需求,人类研究应用铀和钚的核电技术已经有六七十年了,虽然核电相对于煤电有其不可替代的优点,但是安全性和核废料的处置两大问题一直引起广泛关注。

  翻开核能利用的研究发展史,我们注意到科学家早在上世纪50至70年代就研究过钍元素,它作为核燃料应用有很多独特优点,如果拿它来发电,既安全又绿色,是铀和钚最理想的替代品。

  储量大、易提炼、更清洁

  1吨钍能抵200吨铀的能量

  虽然钍元素本身不是裂变物质,但研究发现,一个普通的钍-232原子核吸收一个中子就会变成钍-233,它很快就经历两次β-衰变,变成铀-233,这可是一种长寿命的易裂变物质。

  而相比于铀元素,用钍做核燃料还有很多天然优势。

  第一,地壳表面的钍就是钍-232,几乎不含钍的其它同位素,在原料提取中十分方便,与从天然铀中浓缩只占0.7%的铀-235相比,省了非常费事又成本高昂的一步。

  第二,自然界里的钍主要存在于独居石中,而独居石易于开采而且比铀矿丰富得多。据测算,天然铀里的铀-235只够人类使用几十年。除非现在开始投资另外建设一种增殖反应堆,让占天然铀99%以上的不可裂变的铀-238变成可裂变物质钚-239,那才能延长天然铀的使用年限。而有资料称,钍的估计储量是铀储量的3至4倍。

  第三,钍在核反应中能更充分地释放能量,有资料显示,一吨钍裂变产生的能量抵得上200吨铀。研究还发现,使用钍来发电只产生相当于传统核电站0.6%的辐射垃圾。有毒的放射性废料大大减少,而且这些核废料只需存放三百年,其后的毒性已经很低,不像使用铀的反应堆那样,有的核废料放射性长达万年以上。

  因为自然界里存在的钍几乎全部是不可裂变的钍-232,如果要建造一个使用钍作为燃料的“钍基反应堆”,必须让钍-232接受辐照令其转变为铀-233,随后铀-233吸收中子开始它的链式反应。

  要实现这一点,目前世界上主要有三种设计思路。

  思路之一

  改造现有核电站使用铀钍混合燃料

  要想钍基反应堆中的钍-232持续不断地转变为铀-233,关键是要提供足够强的中子源来辐照它。现在正在运行的核电站的铀基反应堆就是强大的中子源。如果将钍嵌入低浓缩铀的核反应堆中,只要设计得当,就可以改造成为铀钍混合的核反应堆,高的中子通量不但够维持链式反应的需要,而且还有足够多的中子让钍 -232持续生成新的铀-233,实现可裂变物质在堆内的不断增殖。

  将目前正在运行的铀基核电站反应堆,改造成为使用铀钍混合燃料或钚钍混合燃料,这是一种容易想到的思路。这种主张认为,改造现在已经成熟运行的核电站,总比重新设计新的要得心应手得多,况且也较为节省。一家名为 Lightbridge的公司,提出了这样一种设计思路:在堆芯位置放入一些浓缩铀棒作为产生链式反应的“种子棒”,外围则由氧化铀和氧化钍混合原料制成的棒所包围,这样,链式反应持续进行的同时,实现了利用钍使燃料增殖并同时参与链式反应,使反应堆的输出功率提高三分之一。

  思路之二

  设计新型钍基熔盐增殖堆

  另外一种设计思路被称为熔盐增殖反应堆。在上世纪50年代至70年代中,美国橡树岭国家实验室的科学家,就研究利用液态氟化钍为主要燃料建造钍基熔盐核反应堆,做了很多非常重要的工作,这种反应堆还成功运行了5年之久。

  但在冷战达到高潮时,美国政府对追求钍技术已经失去兴趣。原因很简单:钍反应堆无法产生用于制造核武器的材料钚,而铀反应堆在用来发电的同时就生产钚。有人曾经这样说:既然钍拥有很多明显的优势,这个世界为何还要选择铀?答案是:在军用和民用核能上的投入往往关系密切。

  今天,因为核电安全问题与未来能源发展战略的大环境需要、材料和技术的进步,推动了钍基熔盐反应堆研究的复苏,受到各国特别是我国和印度科研机构的重视。

  作为一个例子,这里简单介绍一种运行在高达摄氏七百度高温下的、没有燃料棒的钍基核反应堆的设计思路。钍基燃料(例如液态氟化钍和氟化铀燃料的混合物) 已经混合在主回路的氟化盐冷却剂中,成为一种熔融状态的混合盐类物质。这种堆只需在常规的大气压状态下就可以运行,因此对主回路里的泵和管道的机械性能要求就低得多,使得运行安全有了保障。为了进一步保障安全运行,堆芯下方还设计了一个“易熔塞”。反应堆过热时,这个小塞子会熔化,熔盐就排入一个容器。裂变物质离开了堆芯,核反应就不会达到临界,链式反应就自动停止了,非常安全。

  当然,制造这种堆还有很多技术问题需要解决。例如,要在大功率状态下发电运行,所有用于主回路的部件、管道的材料在承受高温的同时是否耐腐蚀、耐辐照,就显得非常重要。

  思路之三

  用加速器制造中子流注入钍堆

  从堆外制造出中子流然后注入钍堆,也是启动核反应的另一办法。具体做法是使用一台高能带电粒子加速器将带电粒子(质子)加速到足够高的能量,让它轰击一块铅靶,便会释放出中子,这些中子被注入钍堆撞击堆芯的钍核,就诞生铀-233从而开始裂变的链式反应。这就是正在设计的“加速器驱动次临界系统” (ADS)。

  在这种设计中,堆芯里已经没有铀或钚的参与,这意味着核能的生产更加清洁安全了。这种方法要求高能粒子加速器有较高性能,而目前能满足这种要求的,是一种称为“固定磁场交变梯度”(FFAG)聚焦的同步回旋加速器,它能使被加速到高能量的粒子的回旋半径大大缩小,从而使整个设备的体积大大缩小,使投资建造它成为可能。前不久英国《每日邮报》报道的EMMA电子束加速器就属于这种FFAG型加速器。

  常见的核反应堆在“临界状态”时链式反应可持续进行,不需人工干预。但问题是一旦失控就会出现严重事故。前苏联乌克兰切尔诺贝利核电站一个反应堆就是因为在很低功率状态下运行不稳定,超临界失控导致爆炸。现在的ADS系统则不同,当切断质子束那一刻,钍堆内立即没有中子注入,就不能产生足够的裂变物质,无法维持临界状态,于是链式反应迅即自动停止。所以,这种驱动方法是非常好的安全手段,根本不必担心堆芯熔毁。

http://www.henanci.com/Pages/2011/06/29/20110629054739.shtml

现在中国深受能源苦恼,而核聚变又遥遥无期。能不能使用钍堆作为未来中国的主要能源。
钍堆要产生裂变需要中子,而中子可以通过激光产生。那能不能使用神光系统作为钍堆的点火装置。来点燃钍堆,当神光体制,中子用完,钍堆自然停止裂变。

下面是我查找的激光和中子的资料,好像这些从理论到装置tg都是世界领先。

中国著名核物理学家王淦昌在一九六十四年就提出激光核聚变的初步概 念,成为国际上最早独立提出这一概念的科学家之一。此后,中国开始了有系统的 激光核聚变研究。

   一九七三年,中国科学家采用一路激光驱动氘冰,在实验中观察到了中子:一九七 四年采用一路激光驱动聚氘乙烯靶发生核反应,并在实验中观察到氘氘反应产生的 中子。

   一九八六年,中国采用直接驱动方式使氘氚玻璃靶球出中子,接着在一九九○到一 九九二年间通过实验,用间接驱动方式事先热核聚变反应,观察到了热核中子。 中国著名物理学家于敏及其领导的一批中国科学家在七十年代中期就提出了激光通 过射口,打进重金属外壳包围的空腔,以X光辐射驱动方式事先激光聚变的概念, 并提出了在柱形黑腔中心放置靶丸的结构设计。中国在七十年代末到八十年代建造 了自己的用於激光核聚变研究的激光器--神光装置。





福岛核危机,让全世界对核电安全充满了担忧。德国等一些国家甚至宣布要在不久的未来放弃使用核能。

  寻找更清洁、更安全的能源获得方式,成为人们更加关心的问题。不久前,英国《每日邮报》报道说,世界上已知的钍元素储量可以至少为全球提供1万年的能源支持。目前,英国科学家们已经在曼彻斯特南部的柴郡平原,建起了一个用于研究钍的小型加速器——EMMA,目的是寻求用钍代替铀作为新型核燃料的方式

  为解决人类未来的能源需求,人类研究应用铀和钚的核电技术已经有六七十年了,虽然核电相对于煤电有其不可替代的优点,但是安全性和核废料的处置两大问题一直引起广泛关注。

  翻开核能利用的研究发展史,我们注意到科学家早在上世纪50至70年代就研究过钍元素,它作为核燃料应用有很多独特优点,如果拿它来发电,既安全又绿色,是铀和钚最理想的替代品。

  储量大、易提炼、更清洁

  1吨钍能抵200吨铀的能量

  虽然钍元素本身不是裂变物质,但研究发现,一个普通的钍-232原子核吸收一个中子就会变成钍-233,它很快就经历两次β-衰变,变成铀-233,这可是一种长寿命的易裂变物质。

  而相比于铀元素,用钍做核燃料还有很多天然优势。

  第一,地壳表面的钍就是钍-232,几乎不含钍的其它同位素,在原料提取中十分方便,与从天然铀中浓缩只占0.7%的铀-235相比,省了非常费事又成本高昂的一步。

  第二,自然界里的钍主要存在于独居石中,而独居石易于开采而且比铀矿丰富得多。据测算,天然铀里的铀-235只够人类使用几十年。除非现在开始投资另外建设一种增殖反应堆,让占天然铀99%以上的不可裂变的铀-238变成可裂变物质钚-239,那才能延长天然铀的使用年限。而有资料称,钍的估计储量是铀储量的3至4倍。

  第三,钍在核反应中能更充分地释放能量,有资料显示,一吨钍裂变产生的能量抵得上200吨铀。研究还发现,使用钍来发电只产生相当于传统核电站0.6%的辐射垃圾。有毒的放射性废料大大减少,而且这些核废料只需存放三百年,其后的毒性已经很低,不像使用铀的反应堆那样,有的核废料放射性长达万年以上。

  因为自然界里存在的钍几乎全部是不可裂变的钍-232,如果要建造一个使用钍作为燃料的“钍基反应堆”,必须让钍-232接受辐照令其转变为铀-233,随后铀-233吸收中子开始它的链式反应。

  要实现这一点,目前世界上主要有三种设计思路。

  思路之一

  改造现有核电站使用铀钍混合燃料

  要想钍基反应堆中的钍-232持续不断地转变为铀-233,关键是要提供足够强的中子源来辐照它。现在正在运行的核电站的铀基反应堆就是强大的中子源。如果将钍嵌入低浓缩铀的核反应堆中,只要设计得当,就可以改造成为铀钍混合的核反应堆,高的中子通量不但够维持链式反应的需要,而且还有足够多的中子让钍 -232持续生成新的铀-233,实现可裂变物质在堆内的不断增殖。

  将目前正在运行的铀基核电站反应堆,改造成为使用铀钍混合燃料或钚钍混合燃料,这是一种容易想到的思路。这种主张认为,改造现在已经成熟运行的核电站,总比重新设计新的要得心应手得多,况且也较为节省。一家名为 Lightbridge的公司,提出了这样一种设计思路:在堆芯位置放入一些浓缩铀棒作为产生链式反应的“种子棒”,外围则由氧化铀和氧化钍混合原料制成的棒所包围,这样,链式反应持续进行的同时,实现了利用钍使燃料增殖并同时参与链式反应,使反应堆的输出功率提高三分之一。

  思路之二

  设计新型钍基熔盐增殖堆

  另外一种设计思路被称为熔盐增殖反应堆。在上世纪50年代至70年代中,美国橡树岭国家实验室的科学家,就研究利用液态氟化钍为主要燃料建造钍基熔盐核反应堆,做了很多非常重要的工作,这种反应堆还成功运行了5年之久。

  但在冷战达到高潮时,美国政府对追求钍技术已经失去兴趣。原因很简单:钍反应堆无法产生用于制造核武器的材料钚,而铀反应堆在用来发电的同时就生产钚。有人曾经这样说:既然钍拥有很多明显的优势,这个世界为何还要选择铀?答案是:在军用和民用核能上的投入往往关系密切。

  今天,因为核电安全问题与未来能源发展战略的大环境需要、材料和技术的进步,推动了钍基熔盐反应堆研究的复苏,受到各国特别是我国和印度科研机构的重视。

  作为一个例子,这里简单介绍一种运行在高达摄氏七百度高温下的、没有燃料棒的钍基核反应堆的设计思路。钍基燃料(例如液态氟化钍和氟化铀燃料的混合物) 已经混合在主回路的氟化盐冷却剂中,成为一种熔融状态的混合盐类物质。这种堆只需在常规的大气压状态下就可以运行,因此对主回路里的泵和管道的机械性能要求就低得多,使得运行安全有了保障。为了进一步保障安全运行,堆芯下方还设计了一个“易熔塞”。反应堆过热时,这个小塞子会熔化,熔盐就排入一个容器。裂变物质离开了堆芯,核反应就不会达到临界,链式反应就自动停止了,非常安全。

  当然,制造这种堆还有很多技术问题需要解决。例如,要在大功率状态下发电运行,所有用于主回路的部件、管道的材料在承受高温的同时是否耐腐蚀、耐辐照,就显得非常重要。

  思路之三

  用加速器制造中子流注入钍堆

  从堆外制造出中子流然后注入钍堆,也是启动核反应的另一办法。具体做法是使用一台高能带电粒子加速器将带电粒子(质子)加速到足够高的能量,让它轰击一块铅靶,便会释放出中子,这些中子被注入钍堆撞击堆芯的钍核,就诞生铀-233从而开始裂变的链式反应。这就是正在设计的“加速器驱动次临界系统” (ADS)。

  在这种设计中,堆芯里已经没有铀或钚的参与,这意味着核能的生产更加清洁安全了。这种方法要求高能粒子加速器有较高性能,而目前能满足这种要求的,是一种称为“固定磁场交变梯度”(FFAG)聚焦的同步回旋加速器,它能使被加速到高能量的粒子的回旋半径大大缩小,从而使整个设备的体积大大缩小,使投资建造它成为可能。前不久英国《每日邮报》报道的EMMA电子束加速器就属于这种FFAG型加速器。

  常见的核反应堆在“临界状态”时链式反应可持续进行,不需人工干预。但问题是一旦失控就会出现严重事故。前苏联乌克兰切尔诺贝利核电站一个反应堆就是因为在很低功率状态下运行不稳定,超临界失控导致爆炸。现在的ADS系统则不同,当切断质子束那一刻,钍堆内立即没有中子注入,就不能产生足够的裂变物质,无法维持临界状态,于是链式反应迅即自动停止。所以,这种驱动方法是非常好的安全手段,根本不必担心堆芯熔毁。

http://www.henanci.com/Pages/2011/06/29/20110629054739.shtml
没有人来科普一下吗? tg 现在搞的钍基熔盐堆看上去不靠谱,如果这么好,为什么MD在70年代不搞?
有那么简单?
坐等大神科普。
你该去二炮版问
激光只能提供高温,请问怎么提供中子?
3.3 激光产生中子[10,11]
     超短超强激光加热氘团簇产生核聚变,已经产生了104中子/脉冲或105中子/焦耳,从激光的能量转换成中子的效率看,和美国LLNL上的大型激光器 NOVA上的每焦耳激光的中子产额相当,比日本大阪大学的大型激光装置Gekko 12上的数值大一个数量级,因此是一种很有发展前景的桌面台式的中子发生器,因为这种中子源的时间宽度只有1ps,是一个高中子通量的中子源,可用于材料科学和中子照相.


     氘的团簇在吸收激光能量后要发生库仑爆炸,应该说到现在为止对于库仑爆炸的机理理解尚不非常清楚,尤其是团簇爆炸后产生的氘分子和氘的小团簇如何产生氘- 氘的聚变反应也缺乏细致的了解,在进一步的改进方面,还有发展的余地,例如,如何采用多束的超短超强激光同时照射团簇,或用大于50T的脉冲磁场去推迟热等离子体的解体时间,以增加中子产额.
     利用超短超强激光和氘化聚乙烯作用来产生中子,Hilsher等人用钛宝石激光(300mJ,50fs,10Hz,1018W/cm2)轰击氘化聚乙烯靶也产生了104中子/脉冲,大约每焦耳的激光产生3.3×104中子.Disdier等人用20J,400fs,5×1014W的激光辐照CD2 靶,获得107中子,每焦耳激光产生了3.5×105中子,这是很高的中子产额,他们还要用500J,500fs,1pW的激光照射CD2,以获得更多的中子.
     在激光辐照CD2平面靶时,除了要研究激光能量在CD2靶上的能量沉积的分布外,如何充分地利用沉积的能量是一个很重要的问题.沉积的能量有很大一部分要转变成等离子体的动能,在平面靶的情况下,如何设计靶面形状,以最大限度地使等离子体的动能对D-D反应做贡献.
     3.4 激光产生硬的超短(~100fs)X射线[12]
     用超短超强激光(50mJ,0.5TW,100fs)和50MeV的电子束散射可以产生4nm,300fs的硬X射线,虽然转换效率不高,但产生的X射线强度可以在Si表面产生衍射峰,可以用来研究Si表面相变过程(从固相→熔化过程)的时间分辨的研究,也可以研究蛋白质折叠动力学,蛋白质的折叠时间为 1ns,用300fs的硬X射线可用来了解它的折叠过程中的状态.
     3.5 激光产生正电子[13,14]
     将具有几个MeV的电子,经过很好地准直后,射到一个高Z的靶上,通过Trident过程(Z+e-→Z′+2e-+e+)和Bethe-Heitler 过程(Z+r→Z′+e-+e++r′)产生正电子,采用重复频率的超短超强激光和高Z靶的相互作用,每脉冲可以产生2×107个正电子,经过慢化后,储存在磁场中,它对于基础科学和材料科学的研究是很有用的.
     
     4 主要存在的问题和分析
     
     这门新兴的交叉学科在国际上也只有十多年的历史,但发展十分迅速,搞激光技术和原子核物理的科学家们已经开始在一起召开学术研讨会,共同参加一些实验,由于它是一个新的生长点,发展比较快,也比较容易发现一些新现象,所以合作的积极性也在日益增长.随着超短超强激光技术的发展,在粒子加速、核物理、甚至粒子物理方面可以做出一些很好的工作来.我国发展的情况有些滞后,学科之间的交叉和合作还没有真正形成,学科之间的了解和交流还不够,因此只在交叉学科的边缘上做了一些工作,按照我国在激光技术和核物理方面的力量来说,都应该有可能做出更多更好的工作.目前具有超短超强激光装置的研究单位并不少,但将它们运行好,做出好的物理工作的成果并不多.
     国内的情况也和国际上相似存在着一个问题,即搞强激光技术的专家和搞核物理和粒子物理专家之间的交流、讨论不够,这就会影响这一交叉学科的发展.
     从强场物理到超短超强激光技术,到应用于各个领域,在世界上是基础科学和技术进步相互推动,相互作用的一个范例,基础研究的需求,以及光学科学的基础,非线性科学的基础,促进了超短超强激光技术的发展,而高强度激光的发展又为物理学的发展提供一个崭新的世界.
实验室成功不一定能实用化吧
有没有物理大牛来科普一下。这几年激光核物理发展迅速。tg也有神光3。
中子还分快慢吧。
白菜刀 发表于 2011-10-15 23:27
中子还分快慢吧。
所以要问大牛,具体情况是如何的。按照王老先生的理论,激光直接可以引爆核弹,应该可以产生链式反应。
因此,这个四代核弹和激光钍堆是关联的。军民两用。
大婶大婶快显灵!
聚变-裂变 组合堆。聚变产生的中子,驱动裂变堆释放能量。