日本及加拿大学者共获2015年诺贝尔物理奖

来源:百度文库 编辑:超级军网 时间:2024/04/30 02:08:57


2015年诺贝尔物理学奖揭晓
http://news.sciencenet.cn/htmlnews/2015/10/328149.shtm



Takaaki Kajita



Arthur B.Mcdonald

北京时间10月6日下午5点45分,2015年诺贝尔物理学奖揭晓,日本科学家Takaaki Kajita和加拿大科学家Arthur B. McDonald获奖。获奖理由是“发现了中微子振荡,表明中微子具有质量。”

Takaaki Kajita,日本公民。1959年出生于日本东松山。1986年从日本东京大学获得博士学位。目前为日本宇宙线研究所主任及东京大学教授。

Arthur B.Mcdonald,加拿大公民。1943年出生于加拿大悉尼。1969年从美国加州理工学院获得博士学位。目前为加拿大皇后大学名誉教授。

粒子世界的蜕变

2015年的诺贝尔物理学奖授予了日本的Takaaki Kajita和加拿大的Arthur B. McDonald,以表彰他们在展现中微子变化的实验中所起到的重要贡献,而这种变化需要中微子具有质量的。该发现改变了我们对物质最深处运作的理解,对我们如何看待整个宇宙至关重要。

在新千年交替之际,Takaaki Kajita公布了他在超级神冈探测器(Super-Kamiokande detector)上的发现:大气中的中微子会在两种状态之间转换。同时,远在加拿大,由Arthur B. McDonald领导的研究小组也通过实验发现,太阳中的中微子并不会消失在其前往地球的路上——相反,他们在萨德伯里中微子天文台(Sudbury Neutrino Observatory)中捕捉到另一种状态的太阳中微子。

这个困扰物理学家数十年的中微子谜团就此解开。

相比中微子数量的理论计算,有三分之二的中微子会在测重的时候“消失”。现在,这两项实验告诉我们:那是因为中微子变换了身份。

人们从这项发现中获得了一个具有深远意义的结论,那就是:在很长一段时间里被认为是没有质量的中微子,其实是有质量的,只是很小而已。

对于粒子物理学而言,这是一个历史性的发现,它建立的物质最深处运动标准模型获得了巨大的成功,经受住20多年实验的验证。然而,正如他所要求的中微子应该没有质量,这项新发现清晰地表明了标准模型并不能成为解释宇宙基本成分的完美理论。

获得了今年的诺贝尔物理学奖的这项发现打开了认识隐藏在世界里的中微子的大门。继光子粒子之后,中微子成为宇宙中最多的物质。地球无时不刻不在承受中微子的轰击。

许多中微子是由宇宙辐射和地球大气之间的联系而被创造的,其他的中微子是由太阳内部的核反应而产生的。每秒钟有数以亿计的中微子从我们身体流过,几乎没有任何东西可以阻挡中微子通过,中微子是自然界中最难以捉摸的基本粒子。

现在全世界在不断地进行实验和剧烈活动来捕获中微子并检验它们的属性。对于中微子最深处秘密的发现将重塑我们目前对于宇宙的历史、结构及未来命运的认识。



2015年诺贝尔物理学奖揭晓
http://news.sciencenet.cn/htmlnews/2015/10/328149.shtm



Takaaki Kajita



Arthur B.Mcdonald

北京时间10月6日下午5点45分,2015年诺贝尔物理学奖揭晓,日本科学家Takaaki Kajita和加拿大科学家Arthur B. McDonald获奖。获奖理由是“发现了中微子振荡,表明中微子具有质量。”

Takaaki Kajita,日本公民。1959年出生于日本东松山。1986年从日本东京大学获得博士学位。目前为日本宇宙线研究所主任及东京大学教授。

Arthur B.Mcdonald,加拿大公民。1943年出生于加拿大悉尼。1969年从美国加州理工学院获得博士学位。目前为加拿大皇后大学名誉教授。

粒子世界的蜕变

2015年的诺贝尔物理学奖授予了日本的Takaaki Kajita和加拿大的Arthur B. McDonald,以表彰他们在展现中微子变化的实验中所起到的重要贡献,而这种变化需要中微子具有质量的。该发现改变了我们对物质最深处运作的理解,对我们如何看待整个宇宙至关重要。

在新千年交替之际,Takaaki Kajita公布了他在超级神冈探测器(Super-Kamiokande detector)上的发现:大气中的中微子会在两种状态之间转换。同时,远在加拿大,由Arthur B. McDonald领导的研究小组也通过实验发现,太阳中的中微子并不会消失在其前往地球的路上——相反,他们在萨德伯里中微子天文台(Sudbury Neutrino Observatory)中捕捉到另一种状态的太阳中微子。

这个困扰物理学家数十年的中微子谜团就此解开。

相比中微子数量的理论计算,有三分之二的中微子会在测重的时候“消失”。现在,这两项实验告诉我们:那是因为中微子变换了身份。

人们从这项发现中获得了一个具有深远意义的结论,那就是:在很长一段时间里被认为是没有质量的中微子,其实是有质量的,只是很小而已。

对于粒子物理学而言,这是一个历史性的发现,它建立的物质最深处运动标准模型获得了巨大的成功,经受住20多年实验的验证。然而,正如他所要求的中微子应该没有质量,这项新发现清晰地表明了标准模型并不能成为解释宇宙基本成分的完美理论。

获得了今年的诺贝尔物理学奖的这项发现打开了认识隐藏在世界里的中微子的大门。继光子粒子之后,中微子成为宇宙中最多的物质。地球无时不刻不在承受中微子的轰击。

许多中微子是由宇宙辐射和地球大气之间的联系而被创造的,其他的中微子是由太阳内部的核反应而产生的。每秒钟有数以亿计的中微子从我们身体流过,几乎没有任何东西可以阻挡中微子通过,中微子是自然界中最难以捉摸的基本粒子。

现在全世界在不断地进行实验和剧烈活动来捕获中微子并检验它们的属性。对于中微子最深处秘密的发现将重塑我们目前对于宇宙的历史、结构及未来命运的认识。

十几年前日本提出要在50年内拿30个诺贝尔奖的目标,看来确实是有底气的,如今已有24人拿奖了。。。
日本人测了大气中微子的质量平方差
加拿大那个应该是太阳中微子的质量平方差

PS 我就在日本宇宙线研究所隔壁的那栋楼
说起来排在下一位的工作到应该算是大亚湾的中微子混合矩阵的第三个8度的角的测量了


前几年高能所发现大亚湾一种新的中微子振荡,再拿奖的希望多大呢?

前几年高能所发现大亚湾一种新的中微子振荡,再拿奖的希望多大呢?
statuepeace24 发表于 2015-10-6 19:01
前几年高能所发现大亚湾一种新的中微子振荡,再拿奖的希望多大呢?
昨天我也觉得不行,今天又觉得难说了
statuepeace24 发表于 2015-10-6 18:55
十几年前日本提出要在50年内拿30个诺贝尔奖的目标,看来确实是有底气的,如今已有24人拿奖了。。。
不仅是诺奖,菲尔兹奖小鬼子也拿了不少了。
statuepeace24 发表于 2015-10-6 19:01
前几年高能所发现大亚湾一种新的中微子振荡,再拿奖的希望多大呢?
按照炸藥獎的效率
等10年吧
huor 发表于 2015-10-6 19:04
昨天我也觉得不行,今天又觉得难说了
你觉得国内有获物理奖希望的成果有哪些?
诺贝尔奖发出来现在看来都是三十年前的工作,即使是理论意义特别重大的往往也得十年。除去前年的Higgs,那个太重大了
现在日本得奖多,无非对应上世纪六七八十年代的黄金时代罢了
吴钩霜雪明__ 发表于 2015-10-6 19:08
你觉得国内有获物理奖希望的成果有哪些?
这个我不懂,但看上去也像那么回事

http://lt.cjdby.net/thread-2083189-1-1.html
诺贝尔总部设在中国深圳
这个发现感觉没啥意义。
昨天大村智是东大博士,今天这位梶田隆章又是东大...不得不佩服
粒子物理现在是所谓的标准模型(1979年诺贝尔奖了)一统天下,就是质子中子等等是由夸克组成的,三代夸克分上下型(再带三种色),再加上三代轻子分带电的(比如电子)和中性的(中微子)。这些还可以有反粒子就是通常说的反物质。三种基本相互作用引入光子、W^+- Z^0玻色子,和8种胶子。最后是Higgs玻色子给所有这些东西质量。
传统的标准模型中微子没有质量,与此相容的性质用点术语说是只有左手手征的中微子,当年李政道杨振宁他们其实说的就是这个。
但其实中微子加上质量对于整个理论来说并不是多么大的革新。现在的日本老板对于理论中加入中微子质量也有决定性贡献所以他也在等。
理论上更重大的革命性的问题,一是Higgs玻色子的质量在理论框架内看上去都是有冲突的需要解释,二是暗物质粒子明显超出了标准模型。这两个问题一旦得到确定的解答,发奖速度不会比Higgs慢
huor 发表于 2015-10-6 19:10
这个我不懂,但看上去也像那么回事

http://lt.cjdby.net/thread-2083189-1-1.html
谢谢!紫薯补丁!
武则天 发表于 2015-10-6 19:12
诺贝尔总部设在中国深圳
马可·波罗还在东莞呢。
日本挺厉害啊。
昨天我也觉得不行,今天又觉得难说了
这次没有得奖,以后重复获奖基本不可能了。
日本中微子研究为何能获诺贝尔奖

腾讯太空2015年10月06日18:33分享
[摘要]超级神冈探测器(Super-Kamiokande)是日本东京大学建造的大型中微子探测器,自投入使用以来产生了数个诺贝尔物理学奖等级的成果。
http://tech.qq.com/a/20151006/028547.htm
说到日本的中微子研究,就不得不说到“超级神冈探测器”,自1983年投入使用以来高产出的诞生了数个重量级物理学奖,包括两位诺贝尔物理学奖获得者,分别是小柴昌俊(2002年)、梶田隆章(2015年)。
“超级神冈探测器”是东京大学1982年建造的大型中微子探测器,最初目标是探测质子衰变,也能够探测太阳、地球大气和超新星爆发产生的中微子。它位于日本岐阜县神冈矿山一个深达1000米的废弃砷矿中,主要部分是一个高41.4米、直径39.3米的圆柱形容器,盛有5万吨高纯度的水,容器的内壁上安装有11200个光电倍增管,用于探测高速中微子在水中通过时产生的切连科夫辐射。
圆柱形容器高16米,直径15.6米,装有3000吨水和大约1000只光电倍增管,目的是探测粒子物理学中的一个基本问题——质子衰变。1985年,探测器开始进行扩建,名为神冈核子衰变实验II期(KamiokaNDE-II),灵敏度大大提高。1987年2月,神冈探测器与美国的探测器共同发现了大麦哲伦云中超新星1987A爆发时产生的中微子,这是人类首次探测到太阳系以外的天体产生的中微子。
尽管神冈探测器最初探测质子衰变的目标始终没有实现,但却可以接收来自太阳的中微子,并且测量其入射的方向,研究太阳中微子缺失问题。20世纪90年代,神冈探测器经过再次扩建,于1996年开始观测,名为超级神冈探测器,容量扩大了十倍。1998年,超级神冈探测器的领导者、日本科学家小柴昌俊发表了测量结果,给出中微子振荡的首个确切证据,认为中微子在三种不同“味”之间是可以相互转换的,这也表明中微子是有质量的,而不是粒子物理标准模型中预言的零质量粒子。2002年,超级神冈探测器证实反应堆中产生的中微子发生了振荡。这个探测结果在中微子天文学和粒子物理学中具有里程碑式的意义,小柴昌俊因此获得2002年的诺贝尔物理学奖。
梶田隆章,埼玉大学理学部物理学科毕业,东京大学理学博士。1986年,梶田隆章担任东京大学理学部助手,并开始中微子研究,在世界一流物理学家小柴昌俊、户塚洋二门下学习,其后于观测中微子时发现异样,依此推测中微子震荡的存在。为证实此一推论,需要庞大的观测数据,超级神冈探测器因此应运而生。1996年,超级神冈探测器成功观测大气中的中微子,并测定其质量。1998年,在“中微子物理学・宇宙物理学国际会议”首次发表。1999年,梶田因此获得日本物理学最高奖“仁科芳雄奖”。
梶田历任东京大学宇宙线研究所助手(1988年)、副教授(1992年)、教授(1999年),2008年至今任东京大学宇宙线研究所所长。
2014年,美国《今日物理》杂志(Physics Today)预测,因户塚洋二已故,梶田隆章可望与阿瑟·麦克唐纳分享诺贝尔物理学奖。这一预言终于在2015年实现。(桂林)
日本中微子研究为何能获诺贝尔奖

腾讯太空2015年10月06日18:33分享
[摘要]超级神冈探测器(Super-Kamiokande)是日本东京大学建造的大型中微子探测器,自投入使用以来产生了数个诺贝尔物理学奖等级的成果。
tech.qq.com/a/20151006/028547.htm
说到日本的中微子研究,就不得不说到“超级神冈探测器”,自1983年投入使用以来高产出的诞生了数个重量级物理学奖,包括两位诺贝尔物理学奖获得者,分别是小柴昌俊(2002年)、梶田隆章(2015年)。

超级神冈探测器内部

“超级神冈探测器”是东京大学1982年建造的大型中微子探测器,最初目标是探测质子衰变,也能够探测太阳、地球大气和超新星爆发产生的中微子。它位于日本岐阜县神冈矿山一个深达1000米的废弃砷矿中,主要部分是一个高41.4米、直径39.3米的圆柱形容器,盛有5万吨高纯度的水,容器的内壁上安装有11200个光电倍增管,用于探测高速中微子在水中通过时产生的切连科夫辐射。
圆柱形容器高16米,直径15.6米,装有3000吨水和大约1000只光电倍增管,目的是探测粒子物理学中的一个基本问题——质子衰变。1985年,探测器开始进行扩建,名为神冈核子衰变实验II期(KamiokaNDE-II),灵敏度大大提高。1987年2月,神冈探测器与美国的探测器共同发现了大麦哲伦云中超新星1987A爆发时产生的中微子,这是人类首次探测到太阳系以外的天体产生的中微子。
尽管神冈探测器最初探测质子衰变的目标始终没有实现,但却可以接收来自太阳的中微子,并且测量其入射的方向,研究太阳中微子缺失问题。20世纪90年代,神冈探测器经过再次扩建,于1996年开始观测,名为超级神冈探测器,容量扩大了十倍。1998年,超级神冈探测器的领导者、日本科学家小柴昌俊发表了测量结果,给出中微子振荡的首个确切证据,认为中微子在三种不同“味”之间是可以相互转换的,这也表明中微子是有质量的,而不是粒子物理标准模型中预言的零质量粒子。2002年,超级神冈探测器证实反应堆中产生的中微子发生了振荡。这个探测结果在中微子天文学和粒子物理学中具有里程碑式的意义,小柴昌俊因此获得2002年的诺贝尔物理学奖。
梶田隆章,埼玉大学理学部物理学科毕业,东京大学理学博士。1986年,梶田隆章担任东京大学理学部助手,并开始中微子研究,在世界一流物理学家小柴昌俊、户塚洋二门下学习,其后于观测中微子时发现异样,依此推测中微子震荡的存在。为证实此一推论,需要庞大的观测数据,超级神冈探测器因此应运而生。1996年,超级神冈探测器成功观测大气中的中微子,并测定其质量。1998年,在“中微子物理学・宇宙物理学国际会议”首次发表。1999年,梶田因此获得日本物理学最高奖“仁科芳雄奖”。
梶田历任东京大学宇宙线研究所助手(1988年)、副教授(1992年)、教授(1999年),2008年至今任东京大学宇宙线研究所所长。
2014年,美国《今日物理》杂志(Physics Today)预测,因户塚洋二已故,梶田隆章可望与阿瑟·麦克唐纳分享诺贝尔物理学奖。这一预言终于在2015年实现。(桂林)
huor 发表于 2015-10-6 18:59
说起来排在下一位的工作到应该算是大亚湾的中微子混合矩阵的第三个8度的角的测量了
他们很无耻的只发给两个人!
再来单独的啊,谁知道呢