引力探测器B

来源:百度文库 编辑:超级军网 时间:2024/05/06 16:15:24
引力探测器B本质上是美国国家航空航天局执行的一项借助陀螺仪的相对论性实验。这项实验的主要研究人员是斯坦福大学的物理学家,并主要由洛克希德·马丁公司承包完成。之所以命名为引力探测器B,是因为它被看作是第二个在空间中进行的引力实验,这是相对于1976年发射的引力探测器A而言的。
引力探测器B(简称GP-B)是美国国家航空航天局(NASA)在2004年4月20发射的一颗科学探测卫星。这个任务的计划是测量地球周围的时空曲率,以及相关的能量-动量张量(描述物质的分布及运动的张量),从而对爱因斯坦的广义相对论的正确性和精确性进行检验。卫星的飞行持续到2005年,其后任务进入到了数据分析阶段(2008年5月),并有可能一直持续分析到2010年。引力探测器B的研发历史可追溯到二十世纪六十年代,至2004年正式升空长达四十多年,其耗资达七亿五千万美元。这是美国国家航空航天局历史上研发时间最长的计划,之所以如此拖延的原因不仅仅在于技术上的难题,其中也牵扯进了很多关于科学上与政治上的争论。   

引力探测器B的最初结果证实了广义相对论所预言的测地线效应的精确度达到了误差小于1%,而所期望的参考系拖拽效应的信号强度则和当前的噪声强度处于同一量级(这些噪声主要来自一些尚未建立研究模型的物理效应)。相关的数据分析工作正在进行中,并有可能持续到2010年3月,其目标是对信号中的噪声进行建模分析,从而能够将有用的参考系拖拽信号从中萃取出来,以验证其是否符合预测的量级。

引力探测器B本质上是美国国家航空航天局执行的一项借助陀螺仪的相对论性实验。这项实验的主要研究人员是斯坦福大学的物理学家,并主要由洛克希德·马丁公司承包完成。之所以命名为引力探测器B,是因为它被看作是第二个在太空中进行的引力实验,这是相对于1976年发射的引力探测器A而言的。   在2007年4月14日至17日期间于佛罗里达州杰克逊维尔召开的美国物理学会四月年会上首先公布了引力探测器B的一些初始探测结果。NASA起初提议将引力探测器B的数据分析工作期限延伸至2007年12月底,但随后延长到2008年9月,并有可能进一步延长到2010年3月,届时关于参考系拖拽的科研测量成果将有望正式得出。   

总体而言,这项任务包括对地球引力场中的两种广义相对论效应进行测量:参考系拖拽和测地线效应。这两种效应在此之前还未曾被精确测量过,至少从没有达到过这次引力探测器B所预计将达到的精确量级。
实验的主要目标之一
  实验的主要目标之一是高度精确地测量放置于一颗高度为642千米的极轨道人造卫星上四个陀螺仪的自旋方向改变。这些陀螺仪远离一切可能的扰动,从而提供了一个近于完美的时空参考系。通过对这些陀螺仪自旋方向的测量,可以了解到时空在地球的存在下是如何发生弯曲的,以及更进一步地,测量到地球的自转是如何“拖拽”周围的时空随之一起运动的。这种效应叫做兰斯-蒂林效应,是参考系拖拽的一种;它有时也被称作引力磁性,是由于这种引力场的产生机制类似于电磁学中运动电荷产生感生磁场的原理。
引力探测器B的目标精度是1%
  在引力探测器B发射之前,对参考系拖拽效应仅有的测量数据来自于1997年和2004年发射的两颗LAGEOS卫星,它们采用激光测距的方法声称对参考系拖拽的测量分别达到了约为20%和10%的误差精度。而引力探测器B的目标精度则是1%。另一个在火星引力场中观测兰斯-蒂林效应的测试结果是根据对火星全球探勘者号的位置数据进行恰当分析后得到的,其声称的精度达到了0.5%,但这一结果的精确性却充满争议。
实验的另一主要目标
  是测量地球引力场中的测地线效应。这种效应来自于地球引力场中时空曲率的改变,从而陀螺仪的自转轴在地球引力场中进行平行输运时,在地球自转一周的范围内并不会保持同一方向,最终影响结果是造成陀螺仪的进动。这种效应是参考系拖拽效应的170倍,广义相对论的理论预言由于自旋-轨道耦合和时空曲率而产生的轨道平面上的测地线效应总和会造成陀螺仪每年进动6.606角秒,因此它是一个相当可观的广义相对论效应。对于测地线效应,物理学家基普·索恩有一个通俗演示录像:他使用一个接近扁平的纸质圆锥来模拟地球引力场,而这个圆锥是通过剪掉一个圆环上的一个扇形后粘合得到的。引力探测器B所要测量的,就是这块因测地线效应而“丢失的”扇形(角度),其要求精度将达到万分之一,是迄今为止对广义相对论最精确的实验验证。
引力探测器B卫星发射中的应用
  引力探测器B原本计划于2004年4月19日在范登堡空军基地借助德尔塔-2运载火箭发射,但由于位于高空大气层的风的变化,过程被迫顺延至发射窗口的5分钟后。这项任务的不寻常之处在于,由于对运行轨道的高精度要求,发射窗只能维持一秒钟。因此它的成功发射时间是太平洋时间4月20日9点57分23秒(国际标准时间16点57分23秒),卫星在经过南极点并经过短暂的二级燃烧后于11点12分33秒(国际标准时间18点12分33秒)进入轨道,卫星运行时间持续17个月。

试验设置
  引力探测器B的实验设置包含四个陀螺仪和一个指向飞马座的双星HR8703(又称IM Pegasi)的参考望远镜。在极轨道下,陀螺仪的自转轴也都指向HR8703,从而参考系拖拽和测地线效应所表现出的角度偏移能够被每一个陀螺仪测量到。这些陀螺仪都被存放于一个9英尺高,容积为650加仑的保温瓶中,其中充满了恒温的液氦超流体,以保持低于2开尔文(摄氏零下271度,华氏零下456度)的恒温。之所以要求接近绝对零度的环境是使分子间运动产生的扰动最小化的要求,同时能使构成陀螺仪组件的铅和铌具有超导电性。
陀螺仪转子
  在建造期间,这些陀螺仪转子是人类所能制作得到的最接近完美球体的物体:它们大约为乒乓球大小,相对于完美球体的误差大约只有四十个原子的尺度(小于10纳米)。如果将这些陀螺仪转子按比例放大到地球的尺度,那么这个球上最高的山峰将只有2.4米高。陀螺仪本身的材料是熔凝石英,而在外层则镀上了一层超薄的铌。实验中主要的注意事项之一是尽可能降低来自其他任何非相对论因素的对陀螺仪自旋的扰动,因此在运行中陀螺仪绝对不能接触盛放它们的容器壁。解决这个问题的方法是通过电场将它们悬浮,并用一束氦气流推动它们开始旋转。在实验运行中,它们的自转轴方向是通过采用超导量子干涉仪(简称SQUID)对具有超导电性的铌层所激发的磁场进行监控而测量的(这是由于处于自旋状态的超导体会激发和其自转轴方向精确一致的磁场,参见伦敦磁矩)。
将飞马座的IM Pegasi选做导航星体的原因
  引力探测器B将飞马座的IM Pegasi选做导航星体是基于如下几个原因的:首先它需要具有足够的亮度从而能方便地通过望远镜观测到;其次它在天球坐标中接近赤道,位置十分理想。此外很重要的一点是它的运动规律已经被人们了解得相当清楚,这要归功于它所辐射的相对高强度的射电信号。作为这项任务的准备工作之一,天文学家们分析了基于它发射的射电信号而得到的IM Pegasi相对于遥远类星体的近年来的位置测量数据,从而能够尽可能地根据需求精确获得它的运动规律。引力探测器B本质上是美国国家航空航天局执行的一项借助陀螺仪的相对论性实验。这项实验的主要研究人员是斯坦福大学的物理学家,并主要由洛克希德·马丁公司承包完成。之所以命名为引力探测器B,是因为它被看作是第二个在空间中进行的引力实验,这是相对于1976年发射的引力探测器A而言的。
引力探测器B(简称GP-B)是美国国家航空航天局(NASA)在2004年4月20发射的一颗科学探测卫星。这个任务的计划是测量地球周围的时空曲率,以及相关的能量-动量张量(描述物质的分布及运动的张量),从而对爱因斯坦的广义相对论的正确性和精确性进行检验。卫星的飞行持续到2005年,其后任务进入到了数据分析阶段(2008年5月),并有可能一直持续分析到2010年。引力探测器B的研发历史可追溯到二十世纪六十年代,至2004年正式升空长达四十多年,其耗资达七亿五千万美元。这是美国国家航空航天局历史上研发时间最长的计划,之所以如此拖延的原因不仅仅在于技术上的难题,其中也牵扯进了很多关于科学上与政治上的争论。   

引力探测器B的最初结果证实了广义相对论所预言的测地线效应的精确度达到了误差小于1%,而所期望的参考系拖拽效应的信号强度则和当前的噪声强度处于同一量级(这些噪声主要来自一些尚未建立研究模型的物理效应)。相关的数据分析工作正在进行中,并有可能持续到2010年3月,其目标是对信号中的噪声进行建模分析,从而能够将有用的参考系拖拽信号从中萃取出来,以验证其是否符合预测的量级。

引力探测器B本质上是美国国家航空航天局执行的一项借助陀螺仪的相对论性实验。这项实验的主要研究人员是斯坦福大学的物理学家,并主要由洛克希德·马丁公司承包完成。之所以命名为引力探测器B,是因为它被看作是第二个在太空中进行的引力实验,这是相对于1976年发射的引力探测器A而言的。   在2007年4月14日至17日期间于佛罗里达州杰克逊维尔召开的美国物理学会四月年会上首先公布了引力探测器B的一些初始探测结果。NASA起初提议将引力探测器B的数据分析工作期限延伸至2007年12月底,但随后延长到2008年9月,并有可能进一步延长到2010年3月,届时关于参考系拖拽的科研测量成果将有望正式得出。   

总体而言,这项任务包括对地球引力场中的两种广义相对论效应进行测量:参考系拖拽和测地线效应。这两种效应在此之前还未曾被精确测量过,至少从没有达到过这次引力探测器B所预计将达到的精确量级。
实验的主要目标之一
  实验的主要目标之一是高度精确地测量放置于一颗高度为642千米的极轨道人造卫星上四个陀螺仪的自旋方向改变。这些陀螺仪远离一切可能的扰动,从而提供了一个近于完美的时空参考系。通过对这些陀螺仪自旋方向的测量,可以了解到时空在地球的存在下是如何发生弯曲的,以及更进一步地,测量到地球的自转是如何“拖拽”周围的时空随之一起运动的。这种效应叫做兰斯-蒂林效应,是参考系拖拽的一种;它有时也被称作引力磁性,是由于这种引力场的产生机制类似于电磁学中运动电荷产生感生磁场的原理。
引力探测器B的目标精度是1%
  在引力探测器B发射之前,对参考系拖拽效应仅有的测量数据来自于1997年和2004年发射的两颗LAGEOS卫星,它们采用激光测距的方法声称对参考系拖拽的测量分别达到了约为20%和10%的误差精度。而引力探测器B的目标精度则是1%。另一个在火星引力场中观测兰斯-蒂林效应的测试结果是根据对火星全球探勘者号的位置数据进行恰当分析后得到的,其声称的精度达到了0.5%,但这一结果的精确性却充满争议。
实验的另一主要目标
  是测量地球引力场中的测地线效应。这种效应来自于地球引力场中时空曲率的改变,从而陀螺仪的自转轴在地球引力场中进行平行输运时,在地球自转一周的范围内并不会保持同一方向,最终影响结果是造成陀螺仪的进动。这种效应是参考系拖拽效应的170倍,广义相对论的理论预言由于自旋-轨道耦合和时空曲率而产生的轨道平面上的测地线效应总和会造成陀螺仪每年进动6.606角秒,因此它是一个相当可观的广义相对论效应。对于测地线效应,物理学家基普·索恩有一个通俗演示录像:他使用一个接近扁平的纸质圆锥来模拟地球引力场,而这个圆锥是通过剪掉一个圆环上的一个扇形后粘合得到的。引力探测器B所要测量的,就是这块因测地线效应而“丢失的”扇形(角度),其要求精度将达到万分之一,是迄今为止对广义相对论最精确的实验验证。
引力探测器B卫星发射中的应用
  引力探测器B原本计划于2004年4月19日在范登堡空军基地借助德尔塔-2运载火箭发射,但由于位于高空大气层的风的变化,过程被迫顺延至发射窗口的5分钟后。这项任务的不寻常之处在于,由于对运行轨道的高精度要求,发射窗只能维持一秒钟。因此它的成功发射时间是太平洋时间4月20日9点57分23秒(国际标准时间16点57分23秒),卫星在经过南极点并经过短暂的二级燃烧后于11点12分33秒(国际标准时间18点12分33秒)进入轨道,卫星运行时间持续17个月。

试验设置
  引力探测器B的实验设置包含四个陀螺仪和一个指向飞马座的双星HR8703(又称IM Pegasi)的参考望远镜。在极轨道下,陀螺仪的自转轴也都指向HR8703,从而参考系拖拽和测地线效应所表现出的角度偏移能够被每一个陀螺仪测量到。这些陀螺仪都被存放于一个9英尺高,容积为650加仑的保温瓶中,其中充满了恒温的液氦超流体,以保持低于2开尔文(摄氏零下271度,华氏零下456度)的恒温。之所以要求接近绝对零度的环境是使分子间运动产生的扰动最小化的要求,同时能使构成陀螺仪组件的铅和铌具有超导电性。
陀螺仪转子
  在建造期间,这些陀螺仪转子是人类所能制作得到的最接近完美球体的物体:它们大约为乒乓球大小,相对于完美球体的误差大约只有四十个原子的尺度(小于10纳米)。如果将这些陀螺仪转子按比例放大到地球的尺度,那么这个球上最高的山峰将只有2.4米高。陀螺仪本身的材料是熔凝石英,而在外层则镀上了一层超薄的铌。实验中主要的注意事项之一是尽可能降低来自其他任何非相对论因素的对陀螺仪自旋的扰动,因此在运行中陀螺仪绝对不能接触盛放它们的容器壁。解决这个问题的方法是通过电场将它们悬浮,并用一束氦气流推动它们开始旋转。在实验运行中,它们的自转轴方向是通过采用超导量子干涉仪(简称SQUID)对具有超导电性的铌层所激发的磁场进行监控而测量的(这是由于处于自旋状态的超导体会激发和其自转轴方向精确一致的磁场,参见伦敦磁矩)。
将飞马座的IM Pegasi选做导航星体的原因
  引力探测器B将飞马座的IM Pegasi选做导航星体是基于如下几个原因的:首先它需要具有足够的亮度从而能方便地通过望远镜观测到;其次它在天球坐标中接近赤道,位置十分理想。此外很重要的一点是它的运动规律已经被人们了解得相当清楚,这要归功于它所辐射的相对高强度的射电信号。作为这项任务的准备工作之一,天文学家们分析了基于它发射的射电信号而得到的IM Pegasi相对于遥远类星体的近年来的位置测量数据,从而能够尽可能地根据需求精确获得它的运动规律。

引力探测器B

在其任务本身之外,引力探测器B的研究意义还在于它开发并完善了至少十几种新技术。例如它所用的陀螺仪的稳定性是最好的导航陀螺仪的一百万倍,而为了制得完美球体的陀螺仪转子工作人员花了十年以上的时间并开发出了一套全新的制造工艺。实验中所用的超导量子干涉仪的灵敏度之高可以探测到0.1毫角秒的角度倾斜。在四十多年的研究过程中,引力探测器B也创造了可观的技术、商业和社会收益,例如它用于在太空中控制液氦的渗透式活塞在NASA的其他很多空间项目中都起到了基础性作用。对社会而言最重要的是,引力探测器B的研究对众多教师和学生的事业和生活都产生了深远的影响,这其中包括79篇斯坦福大学以及13篇其他大学的博士论文。参与引力探测器B的人员其中包括美国的第一位女宇航员,一位航空公司首席执行官以及一位诺贝尔奖获得者。


2004年4月20日   引力探测器B成功从范登堡空军基地发射并进入预定轨道。   2004年8月27日   引力探测器B进入科学探测阶段。在任务第129天时除四号陀螺仪的自转轴需要进行进一步准直外,全部系统都准备完毕投入数据采集工作。   2005年8月15日   引力探测器B完成科学探测阶段,仪器转入最终数据校正模式。   2005年9月26日   校正阶段完成,恒温室中还留有液氦,航天器回到科学探测模式并等待液氦完全耗尽。   2006年2月   数据分析第一阶段完成。   2006年9月   数据分析团队意识到需要做更多的误差分析,特别是关于陀螺仪的本体极迹运动,这使得数据分析的时间表延长到2007年4月之后,并使得NASA的资金提供延长到2007年底。   2006年12月   数据分析第三阶段完成。   2007年4月14日   宣布了截止于当前所得到的最佳测量结果。弗朗西斯·伊夫利特在美国物理学会四月年会上报告了一些初始测量成果:“从引力探测器B的陀螺仪测得的数据清晰地证实了爱因斯坦的理论对测地线效应的预言的误差低于1%。不过由于参考系拖拽效应要比测地线效应弱170倍,斯坦福的科学家们仍然在致力于从航天器的数据中萃取它的本征信息。”

2004年4月20日   引力探测器B成功从范登堡空军基地发射并进入预定轨道。   2004年8月27日   引力探测器B进入科学探测阶段。在任务第129天时除四号陀螺仪的自转轴需要进行进一步准直外,全部系统都准备完毕投入数据采集工作。   2005年8月15日   引力探测器B完成科学探测阶段,仪器转入最终数据校正模式。   2005年9月26日   校正阶段完成,恒温室中还留有液氦,航天器回到科学探测模式并等待液氦完全耗尽。   2006年2月   数据分析第一阶段完成。   2006年9月   数据分析团队意识到需要做更多的误差分析,特别是关于陀螺仪的本体极迹运动,这使得数据分析的时间表延长到2007年4月之后,并使得NASA的资金提供延长到2007年底。   2006年12月   数据分析第三阶段完成。   2007年4月14日   宣布了截止于当前所得到的最佳测量结果。弗朗西斯·伊夫利特在美国物理学会四月年会上报告了一些初始测量成果:“从引力探测器B的陀螺仪测得的数据清晰地证实了爱因斯坦的理论对测地线效应的预言的误差低于1%。不过由于参考系拖拽效应要比测地线效应弱170倍,斯坦福的科学家们仍然在致力于从航天器的数据中萃取它的本征信息。”

引力探测器B

引力探测器B
除了获得更精确的数值之外这个实验还有什么意义呢
验证爱因斯坦的相对论
popman1999 发表于 2011-5-9 00:15


    物理学发展史上的实验有什么意义,这个就有什么意义。
这个没听说过,听说过的都是引力波的探测器LIGO和LISA