[转贴了耳]新人必读--弹道学

来源:百度文库 编辑:超级军网 时间:2024/04/28 01:42:38
弹道学
弹道学是研究各种弹丸或抛射体从发射起点到终点的运动规律,及伴随发生的有关现象的学科。弹丸从起点到终点要经历起动、推进、在空中运动、对目标作用等不同的过程,并在不同环境中有不同的运动规律,产生不同的现象。

    早期,由于弹道学的理论基础——力学正开始发展,弹道学仅局限于研究抛射体运动轨迹的力学范畴。随着弹道测量技术及各基础学科的发展,弹道学研究的内容逐步扩充,发展成为涉及固体力学、气体动力学、空气动力学、液体力学、弹塑性力学、化学热力学、燃烧理论及爆炸力学等学术领域的综合性学科,并相继形成了不同的分支学科。

    发射武器通常有两种典型的发射方式:一种是枪炮系统的发射方式,它利用高温的火药燃气在枪炮膛内膨胀作功,推动弹丸以一定的速度射出膛口;另一种是火箭系统的发射方式,它利用火药燃气从火箭发动机的喷管流出时所产生的反作用力,推动战斗部连同发动机本身一起在空中飞行。根据发射方式的不同,弹道学相应地分为枪炮弹道学和火箭弹道学。

    在枪炮的射击过程中,弹丸的运动要经历膛内阶段、射出膛口后继续受火药燃气作用的阶段和在空气阻力、地球引力与惯性力作用下的飞行阶段。因而枪炮弹道学也相应地划分为:研究膛内火药燃烧、物质流动、弹丸运动和能量转换等有关现象及其规律的内弹道学;研究弹丸穿越膛口流场时受力和运动规律,以及伴随膛内火药燃气排空过程发生的各种现象的中间弹道学;研究弹丸在空中飞行运动的现象及其规律的外弹道学。火箭弹道学则根据火箭发动机内部所发生的现象和整个弹体在空中飞行的现象,分为火箭内弹道学(或称火箭发动机原理)和火箭外弹道学。

    从学科性质来划分,枪炮内弹道学和火箭内弹道学基本上同属一个学科,统称为内弹道学;枪炮外弹道学和火箭外弹道学则又同属另一个学科,统称为外弹道学。在近代弹道学的发展过程中,对弹丸在目标区域的运动规律、目标的作用机理及威力效应的研究已形成了专门的学术领域,称为终点弹道学。它同内弹道学、中间弹道学及外弹道学一起组成了弹道学的完整体系。

    此外,发射起点的点火现象和弹丸起动过程等问题的研究也日益得到重视,有可能从内弹道学分化出来,发展成为一个新的弹道学分支——起点弹道学。各弹道学分支既有其相对独立的研究内容和弹道规律,分支之间又相互联系,存在一系列因果关系,从而表明了全弹道的整体概念。

    在现有弹道学体系的基础上,还形成了一些新的分支,例如:随着航天及水中发射系统的发展,形成了大气外层的太空弹道学(或地球弹道学)和水中弹道学;随着导弹的发展而有了导弹弹道学;还有专门研究弹丸及冲击波对有机体杀伤作用的创伤弹道学等。此外,由于各弹道学科的研究对象和测量参数具有不同的特点,不仅要有专门的设施进行弹道试验,而 且还要研究专门的测量方法和测量仪器,因而又形成了实验弹道学。

    弹道学是武器设计和使用的理论基础。研究弹道学的目的即在于应用全弹道的观点在理论上和实践上指导武器的设计、使用和改进,使武器在最优化条件下达到预期的射程、射击精度和战术效果,并保证重复射击性能的一致性。这种指导作用,说明了弹道学在研究发射武器的各有关学科中占有重要的地位。弹道学
弹道学是研究各种弹丸或抛射体从发射起点到终点的运动规律,及伴随发生的有关现象的学科。弹丸从起点到终点要经历起动、推进、在空中运动、对目标作用等不同的过程,并在不同环境中有不同的运动规律,产生不同的现象。

    早期,由于弹道学的理论基础——力学正开始发展,弹道学仅局限于研究抛射体运动轨迹的力学范畴。随着弹道测量技术及各基础学科的发展,弹道学研究的内容逐步扩充,发展成为涉及固体力学、气体动力学、空气动力学、液体力学、弹塑性力学、化学热力学、燃烧理论及爆炸力学等学术领域的综合性学科,并相继形成了不同的分支学科。

    发射武器通常有两种典型的发射方式:一种是枪炮系统的发射方式,它利用高温的火药燃气在枪炮膛内膨胀作功,推动弹丸以一定的速度射出膛口;另一种是火箭系统的发射方式,它利用火药燃气从火箭发动机的喷管流出时所产生的反作用力,推动战斗部连同发动机本身一起在空中飞行。根据发射方式的不同,弹道学相应地分为枪炮弹道学和火箭弹道学。

    在枪炮的射击过程中,弹丸的运动要经历膛内阶段、射出膛口后继续受火药燃气作用的阶段和在空气阻力、地球引力与惯性力作用下的飞行阶段。因而枪炮弹道学也相应地划分为:研究膛内火药燃烧、物质流动、弹丸运动和能量转换等有关现象及其规律的内弹道学;研究弹丸穿越膛口流场时受力和运动规律,以及伴随膛内火药燃气排空过程发生的各种现象的中间弹道学;研究弹丸在空中飞行运动的现象及其规律的外弹道学。火箭弹道学则根据火箭发动机内部所发生的现象和整个弹体在空中飞行的现象,分为火箭内弹道学(或称火箭发动机原理)和火箭外弹道学。

    从学科性质来划分,枪炮内弹道学和火箭内弹道学基本上同属一个学科,统称为内弹道学;枪炮外弹道学和火箭外弹道学则又同属另一个学科,统称为外弹道学。在近代弹道学的发展过程中,对弹丸在目标区域的运动规律、目标的作用机理及威力效应的研究已形成了专门的学术领域,称为终点弹道学。它同内弹道学、中间弹道学及外弹道学一起组成了弹道学的完整体系。

    此外,发射起点的点火现象和弹丸起动过程等问题的研究也日益得到重视,有可能从内弹道学分化出来,发展成为一个新的弹道学分支——起点弹道学。各弹道学分支既有其相对独立的研究内容和弹道规律,分支之间又相互联系,存在一系列因果关系,从而表明了全弹道的整体概念。

    在现有弹道学体系的基础上,还形成了一些新的分支,例如:随着航天及水中发射系统的发展,形成了大气外层的太空弹道学(或地球弹道学)和水中弹道学;随着导弹的发展而有了导弹弹道学;还有专门研究弹丸及冲击波对有机体杀伤作用的创伤弹道学等。此外,由于各弹道学科的研究对象和测量参数具有不同的特点,不仅要有专门的设施进行弹道试验,而 且还要研究专门的测量方法和测量仪器,因而又形成了实验弹道学。

    弹道学是武器设计和使用的理论基础。研究弹道学的目的即在于应用全弹道的观点在理论上和实践上指导武器的设计、使用和改进,使武器在最优化条件下达到预期的射程、射击精度和战术效果,并保证重复射击性能的一致性。这种指导作用,说明了弹道学在研究发射武器的各有关学科中占有重要的地位。
内弹道学是研究发射过程中枪炮膛内及火箭发动机内的火药燃烧、物质流动、能量转换、弹体运动和其它有关现象及其规律的弹道学分支学科。

    枪炮和火箭的发射过程都是从点火开始,通过机械击发、电热或其他方式将点火药点燃,所产生的高温气体及灼热粒子再点燃火药装药,迅即扩展到整个装药表面,并同时沿着药粒厚度向内层燃烧,不断产生高温气体。

    在密闭的枪炮膛内,高温气体直接膨胀做功,推动弹丸向前加速运动,火药燃气及部分未完全燃烧的火药粒也随着向前运动。同时,作用于膛底的气体压力推动枪炮身向后运动。在线膛武器中,弹丸在直线运动的同时还作旋转运动。因此,能量在枪炮膛内的变化过程,实际上就是火药燃气的部分内能转化为弹丸、枪炮身以及随弹丸运动的药粒、火药燃气等的动能的过程。

    在火箭发动机内,火药装药的燃速比枪炮膛内要低得多,它所生成的高温气体经过喷管膨胀作用产生高速气流,利用气流向外排出时产生的反作用力推动弹体运动。这两种发射过程代表了两种典型的发射方式。以这两种典型为基础,还可以演变为其他复杂类型的发射方式。例如,无坐力炮的发射过程就是属于这两种典型相结合的发射方式。

    内弹道学的研究对象,主要是有关点火药和火药的热化学性质,点火和火药燃烧的机理及规律;有关枪炮膛内火药燃气与固体药粒的混合流动现象,火箭发动机内的气流现象以及气流对火药燃烧的影响;有关弹带嵌进膛线的受力变形现象,弹丸和枪炮身的运动现象;有关能量转换、传递的热力学现象和火药燃气与膛壁或发动机之间的热传导现象等。

    内弹道学主要从理论和实验上对膛内的各种现象进行研究和分析,揭示发射过程中所存在的各种规律和影响规律的各有关因素;应用已知规律提出合理的内弹道的方案,为武器的设计和发展提供理论依据;有效地利用能源及探索新的发射方式等。

    利用所掌握的内弹道规律,改进现有的发射武器和设计出新型的发射武器,这是内弹道设计 的研究内容。它是以内弹道方程组为基础的 ,例如根据战术技术要求所给定的火炮口径,及外弹道设计所给出的初速、弹重等主要起始数据,解出合适的炮膛结构数据、装填条件,以及相应的压力和速度变化规律。

    在内弹道设计方案确定之后,方案的数据就是进一步进行炮身、炮架、药筒、弹丸、引信及发动机等部件设计的基本依据。因此,发射武器的性能在很大程度上决定于内弹道设计方案的优化程度。

    能源是实现内弹道过程的主要物质基础,如何选择合适的能源,有效地控制能量释放规律,合理地应用释放的能量以达到预期的弹道效果,一直是内弹道学研究的一个主要问题。

    火药是最常用的主要能源。早在无烟药开始应用时对于成形药粒的燃烧,就采用了全面着火、平行层燃烧的假设,并以单一药粒的燃烧规律代表整个装药的燃烧规律,称为几何燃烧定律。它是内弹道学的一个重要理论基础。长期以来,应用这个定律指导改进火药的燃烧条件,控制压力变化规律,以达到提高初速和改善弹道性能的目的。

内弹道学发展简史

    内弹道学的理论基础是在19世纪20~30年代才开始建立起来的。最先 进行研究的是意大利数学家拉格朗日,他在1793年对膛内气流现象作出气流速度沿轴向按线性分布的假设,从而确定出膛底压力与弹底压力之间的近似关系 ;1664年,雷萨尔应用热力学第一定律建立了内弹道能量方程;1866~1915年,英国物理学家、枪炮专家诺布耳和英国化学家、爆炸专家艾贝尔根据密闭爆发器的试验,确定出火药燃气的状态方程。

    19世纪末法国科学家维埃耶总结了前人研究黑火药燃烧的成果,及无烟火药的平行层燃烧的现象,建立了几何燃烧定律的假设。在此假设基础上采用了相应的火药形状函数来描述燃气生成规律,并用实验方法确定出燃速函数。根据这些理论基础已能建立用于进行弹道解的数学模型,从而在理论和实践上,形成了以几何燃烧定律和定常流假设为基础的内弹道学术体系。在近一个世纪的实践中,这种内弹道体系在武器的设计和弹道实践中一直起着主要的指导作用。

    20世纪20年代以后,随着气体动力学的发展,以及射弹向高初速方向发展的需要,膛内物质流动现象已成为基础理论研究的主要对象,并逐渐形成了新的学术领域。其基本内容就是应用气动力学原理来描述内弹道过程,建立内弹道偏微分方程组的数学模型,求解方程组即得到非定常流的弹道解。

    最早研究此问题的是英国地球物理学家洛夫和数学家皮达克。他们作出火药瞬时燃烧的单一气相假定,建立了最简单的模型。以后虽然还出现过较复杂的模型,但是限于计算的困难,除了理论意义之外,还不能用于弹道实践。直到50年代以后,随着电子计算技术的发展,才使模型的不断完善和具体应用成为现实。

    20世纪70年代还出现了建立在火药粒逐层燃烧条件下气固混合相的模型。这种模型所给出的弹道解,基本上能够反映出膛内气流速度及压力的分布规律,从而有可能为膛内激波形成机理的研究,提供必要的理论依据。虽然这方面的弹道实践,目前还处于积累经验的阶段,但就理论基础而言,已经发展成为以非定常流为基础的内弹道学术领域。它同以拉格朗日假设为基础的传统内弹道学有着很大的差别,但是在实用上两者各有所长。

    在实验内弹道学方面,由于内弹道过程具有高温、高压、高速及时间很短的特点,内弹道的测量技术也相应地有其特点,并已发展成为专门的领域。最早出现的弹道测量是1740年英国数学家、军事工程师罗宾斯应用弹道摆法测量弹丸的初速。

    19世纪60年代,布朗日发明了落体测时仪,大大地提高了测量初速的精度,诺布耳用铜柱测压法测量火炮的最大压力,并配合音叉测时法应用于密闭爆发器,进行压力随时间变化的测量。这两种测量技术的发展,使内弹道学开始进入应用科学的领域,对整个武器的发展具有深远的意义。但是应用铜柱法还不能准确和完整地测量膛内压力变化的规律。

    20世纪30年代以后,又发展了测量膛内压力随时间变化的压电仪器。这种仪器的应用,使内弹道理沦和相应的数学模型得到了客观的检验。50年代以后,随着电子技术和计算技术的发展,广泛使用了数据自动处理的测速和测压仪器,测量炮身温度分布的热电偶,测量膛内弹丸位移随时间变化的微波和激光干涉仪,以及测量膛口弹丸运动姿态和流场变化的高速摄影仪等仪器。在试验方法方面也趋于应用综合性多参数的弹道测量,以提供更多的数据。现代两相流理论就是在多路压力曲线测量条件下发展起来的。

    随着实验内弹道学的进一步发展,必将使内弹道学理论日趋完善。
中间弹道学是研究弹丸穿越枪炮膛口流场时的受力和运动规律,以及伴随膛内火药燃气排空过程发生的各种现象的弹道学分支学科。

    弹丸飞出枪炮膛口时,高温、高压的火药燃气被突然释放,在膛口外急剧膨胀,超越并包围弹丸,形成气动力结构异常复杂的膛口流场,继续对武器及弹丸产生后效作用。并且在膛口周围形成膛口冲击波、噪声及膛口焰,构成对周围环境的危害。

    中间弹道学主要研究膛口流场的形成与发展机理、火药燃气对弹丸的后效应、火药燃气对武器的后效作用、膛口气流对周围环境的影响等几个方面。

    膛口流场是由多个冲击波与射流组成的三维、非定常气流区。在弹丸飞出前,膛口外已有了由于弹丸在膛内运动而推动空气柱产生的球面初始冲击波。弹丸出膛后,口部又形成了一个火药燃气射流,它具有形状与尺寸比较规则的内激波系。

    在射流与初始冲击波之间,则是火药燃气推动空气形成的第二个球面冲击波,称为膛口冲击波。在射流边界,未完全氧化的火药燃气与空气混合后,可能再次重新燃烧而形成明亮的膛口焰。当武器装有各种膛口装置时,还将出现多个冲击波与多个射流在空间嵌套、相交的更为复杂的波系。对流场机理的研究是中间弹道学理论分析的基础。

    火药燃气对弹丸的后效作用是研究弹丸穿越膛口流场时获得的增速和受到的扰动。火药燃气射流核心的最大速度通常超过2000米/秒,它以马赫数3~5的相对速度由弹尾方向作用于弹丸,使弹丸继续加速。而且,对于已具有一定初始攻角的弹丸还将产生翻转力矩,使章动加剧,散布增大。在有膛口装置或气流、尾翼不对称时,这个影响更为严重。

    此项研究的目的是为了分析弹丸起始扰动产生的原因和影响因素,寻求控制和减小起始扰动的措施,较为准确地给定外弹道的初始条件,为提高射击精度、合理地设计弹丸与膛口装置结构提供理论依据。

    火药燃气对武器的后效作用是研究后效期膛内参数的变化规律,及火药燃气对身管、膛口装置的反作用力。这对解决武器威力与机动性的矛盾有一定意义。

    膛口气流对周围环境的影响是研究膛口冲击波、噪声、膛口焰等危害因素的作用规律与控制原理,为合理防护提供依据,以便最大限度地减轻其危害作用,进一步提高武器的性能。

    20世纪60年代以来,随着武器威力的不断提高,射击精度、膛口气流对周围环境的危害作用,及武器威力与机动性的矛盾等问题日益突出;同时,气体动力学、计算科学以及流场测量和显示技术等的发展,为中间弹道学的研究提供了理论基础和实验手段,使其不断扩展研究范围并逐步形成了自己的学科体系。

    在中间弹道学的发展中,测量技术和数字模拟方法的研究占有重要地位。除已广泛采用闪光、激光及 X光高速摄影和多点测压系统外,在光谱与声学测温、激光测速与干涉法流场显示技术等方面均有较大进展,利用电子计算机进行二维非定常流数值计算已较成熟,可模拟包括弹丸及简单膛口装置在内的多介质流场,并朝着三维、真实流场的数字模拟发展。
终点弹道学是研究弹丸或战斗部在目标区域的运动规律、对目标的作用机理及威力效应的弹道学分支学科。它涉及连续介质力学、爆炸动力学、冲击动力学、弹塑性理论等学科领域,各种目标的毁伤标准也属于本学科的研究范畴。终点弹道学的研究成果主要用于弹药威力设计,并为目标的防护设计提供依据。

    弹丸或战斗部可以通过机械、热、化学、生物、核等效应毁伤目标。爆炸与冲击是最基本的作用方式。普通炸药爆炸后,在炸点形成高温、高压和急剧膨胀的爆轰产物,可以直接毁伤目标,也可将能量赋予如空气介质、破片、金属流等中间载体,通过中间载体的冲击或侵彻等作用毁伤目标。某些动能弹丸则利用高速撞击的动能直接击毁目标。

    空气、水等连续介质在受到爆轰产物的猛烈冲击后,产生高速传播的冲击波。冲击波的强度(超压)决定于炸药种类、介质的密度和可压缩性,并随着传播距离的增大而急剧减弱。处于介质内的不同目标,在具有一定超压(或比冲量)的冲击波作用下被毁伤。在水中,爆轰产物还产生气泡,气泡的胀缩脉动所形成的压力波也将对目标起附加的破坏作用。

    在抗拉强度较低的颗粒性土壤中,冲击波(或压力波)使土壤受到强烈挤压,发生径向运动。近距离内的土壤颗粒被压碎构成压碎区;较远距离处的土壤则仅开裂构成破裂区。当压力波传播到土壤表面时,将产生反射拉伸波,促使表层土壤破坏。当炸点距地面较近时,炸点上部的土壤被抛出形成弹坑。通常用压碎区的半径或弹坑容积衡量爆炸体在土壤中的爆破效应。它与炸药的性能、重量、土壤的特性及爆炸的深度、角度等有关。

    弹丸壳体在爆轰产物的作用下急剧膨胀并破裂成大小不均的破片,以约1000~2000米/秒的速度向四周飞散,构成破片场。密集的高速破片在一定范围内可以毁伤不同强度的目标。毁伤效果决定于目标的状况和破片的形状、大小、速度、数量及其在破片场内的分布。而破片的这些因素,则与群体的形状、结构、材料及其加工处理、炸药的性能及重量、起爆方式、弹丸落角等多种因素有关。枪弹弹头对目标的作用情况与破片相同。

    破片对人体的致伤机理主要是侵彻作用和空腔效应。对于骨骼等坚固组织,可直接侵彻出永久性原发贯通伤道或盲管伤道,甚至使它碎裂。对于软组织,由于侵彻压力波的作用,原发伤道将急剧扩张形成暂时空腔,并使空腔剧烈地反复胀缩运动。这不仅会严重损伤肌肉、血管和神经,还可折断未直接命中的骨骼。对于颅脑、肝脏等稠粘性组织,高速破片产生的压力波可引起器官的广泛损伤,甚至粉碎。创伤程度取决于破片在目标内释放能量的快慢和大小。

    有关破片击中人体后的运动规律及其致伤效应的研究,已形成了一个新的分支学科——创伤弹道学。它的研究成果不仅可用于指导弹药威力设计,还有助于战地创伤的鉴别、诊断和治疗。

    穿甲弹是利用成型爆炸装药的聚能效应,及闭合金属药型罩形成的高速金属射流,穿透装甲目标。炸药从底部起爆时,爆轰波从罩顶沿罩面扫过,被扫过的罩微元顺次以很高的变形速度向中心压垮并在轴线处闭合。罩内层金属被挤成金属流,外层金属则形成“杵体”。整个金属流具有较大的速度梯度,即头部速度高达8000米/秒以上,尾部速度低。金属流在运动中不断被拉长,最后产生缩颈并断裂成小段,成为不连续射流,当金属流碰击装甲时,在碰击点处可产生十万兆帕以上的局部压力,使装甲材料呈流体性态。在侵彻过程中射流不断消耗,后续射流速度越来越低,碰击点压力下降,破甲能力迅速减少直至终止。

    炸药性能和重量、装药结构、起爆方式、药型罩材料及其几何尺寸等对金属流的形成和侵彻具有显著影响。炸药主要影响射流在运动中的拉长程度和断裂、失稳现象的出现。

    在破甲理论方面,通常按简单的定常或准定常理想不可压缩流体模型处理,亦有考虑可压缩性或装甲板强度效应的分析模型。对于大锥角或盘形药型罩,爆炸后将被挤成一个速度梯度很小的“杵体弹”,或翻转成一个整体的高速弹丸,均称为“自锻弹丸”。它与金属流不同,在飞行中无拉长、缩颈、断裂现象,其空气动力特性亦较稳定。

    动能穿甲弹通常以500~1800米/秒的速度撞击装甲,可以发生击穿、嵌入或跳飞等运动形式。装甲板的贯穿可以呈现冲塞型、花瓣型、破碎型、延性扩孔型或崩落型等破坏形式。弹丸本身可保持完整、有限塑性变形或完全破坏。所有这些决定于撞击的速度与倾角、弹丸和装甲材料的性能、装甲厚度及弹头形状与结构等因素。

    通常采用简单的经验或半经验公式估算极限穿透速度、剩余速度等。针对不同的穿甲条件建立相应的分析模型,如对薄板装甲有能量及动量等分析模型;对中厚装甲则根据经验对阻力、装甲破坏形式等作出某些简化假定进行分析。

    弹丸贴于装甲表面爆炸时,在装甲板内产生一个强冲击波,并在传至甲板背面时发生反射,形成拉伸应力波。当反射波与入射波相互作用所引起的拉应力超过材料的断裂极限时,即在该处发生层裂或崩落出碟形碎块。碎块可直接毁伤装甲背后的人员、设备。入射波强度足够高时,将在层裂后的自由面上连续反射,发生多层层裂。

    终点弹道学的兴起可以追溯至19世纪20年代以前,早期的研究由于缺乏必要的实验手段和理论基础,主要采用实弹射击的方式得出各种关于弹丸侵彻、爆破,杀伤的经验公式及数据。20世纪40年代初期至50年代后期,随着弹塑性力学特别是塑性动力学、爆炸动力学的期,随着弹塑性力学特别是塑性动力学、爆炸动力学的发展,大大促进了终点弹道学的理论分析研究。

    20世纪60年代以后,随着现代测试手段的不断出现和完善,大型计算机的迅速发展,使终点弹道学的研究,从长期依靠实弹射击进入在可控条件下进行实验和计算机数值模拟相结合的阶段。它促使许多重要理论与实际问题的研究朝着纵深的领域进展。
gou权威!就是看着有点眼晕!!