中国科技大学研制成功世界上第一台量子计算机

来源:百度文库 编辑:超级军网 时间:2024/04/19 14:25:50
研究成果发表在2007年12月19日出版的国际权威物理学最权威的期刊《 Physical Review Letters》上,标志着我国光学量子计算机研究达到了国际领先水平。
   November 2007, to be published in Physical Review Letters
  
  Demonstration of a compiled version of Shor's quantum factoring algorithm using photonic qubits
  
  Chao-Yang Lu, Daniel E. Browne, Tao Yang, and Jian-Wei Pan
  
  We report an experimental demonstration of a complied version of Shor's algorithm using four photonic qubits. We choose the simplest instance of this algorithm, that is, factorization of $N=15$ in the case that the period $r=2$ and exploit a simplified linear optical network to coherently implement the quantum circuits of the modular exponential execution and semi-classical quantum Fourier transformation. During this computation, genuine multiparticle entanglement is observed which well supports its quantum nature. This experiment represents an essential step toward full realization of Shor's algorithm and scalable linear optics quantum computation.
  
  2007 The American Physical Society.
  
  中国科技大学的这篇prl 似乎很有分量。两个月前,这篇论文还仅仅是预印本的时候,《新科学家》(new scientist)就报道了
  
  http://technology.newscientist.com/article/mg19526216.700
  
  Quantum threat to our secret data
  
  * 13 September 2007
  * Saswato Das
  * Magazine issue 2621
  
  IT MIGHT seem like an esoteric achievement of interest to only a handful of computer scientists, but the advent of quantum computers that can run a routine called Shor's algorithm could have profound consequences. It means the most dangerous threat posed by quantum computing - the ability to break the codes that protect our banking, business and e-commerce data - is now a step nearer reality.
  
  Adding to the worry is the fact that this feat has been performed by not one but two research groups, independently of each other. One team is led by Andrew White at the University of Queensland in Brisbane, Australia, and the other by Chao-Yang Lu (USTC的,第一作者;潘建伟是通信作者) of the University of Science and Technology of China, in Hefei. Both groups have built rudimentary laser-based quantum
  computers that can implement Shor's algorithm - a mathematical routine capable of defeating today's most common encryption ...
  
  
  潘建伟的论文被PRL接收后,还没有正式发表,德国的《创新报导》又发表了评论:
  
  http://www.innovations-report.de ... /bericht-99247.html
  
  A quantum computer breakthrough and dark matter stars
  (30.11.2007)
  Highlights in this issue: A quantum computer breakthrough and dark matter stars.
  
  Anzeige
  Quantum Computer Breakthrough
  
  Chao-Yang Lu, Daniel E. Browne, Tao Yang, and Jian-Wei Pan
  Physical Review Letters (forthcoming) &
  
  B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James , A. Gilchrist, and A. G. White
  Physical Review Letters (forthcoming)
  
  Two research groups have independently managed to experimentally solve a mathematical problem with light-based quantum computers. The simultaneous achievements appear to be the first experimental demonstrations of true (though rudimentary) quantum mechanical computations. Both groups manipulated quantum mechanically entangled photons to calculate the prime factors of the number 15.
  
  Although the physicists could have gotten the answer to the problem much more easily by querying an average elementary school child, the method both groups used involved a quantum mechanical approach commonly known as Shor's algorithm. Previous theoretical work has shown that the algorithm could potentially crack cryptographic codes that are practically unbreakable with non-quantum mechanical (classical) computers.
  
  While there's no great need to factor numbers as small as 15, the research demonstrates that quantum computation is feasible with existing technology and could in principle be scaled up to tackle problems that would take longer than the age of the universe to solve with any classical computer, but would require only minutes on a quantum computer.
  
  In addition to factoring large numbers and solving other challenging mathematical problems, quantum computers based on the work of these two groups could help model quantum mechanical problems in physics and chemistry (sehttp://xxx.lanl.gov/ftp/arxiv/papers/0710/0710.0278.pdf for an example of a quantum simulator experiment by C.-Y. Lu et al.), and lead to ultra high speed searching algorithms.
  
  Chao-Yang Lu (USTC的,第一作者;潘建伟是通信作者)and his group are currently expanding on their work by trying to manipulate larger numbers of quantum bits. In the long run, they plan to add quantum memory to their quantum computers, which could further increase the number of photons they can control. In addition, because the loss of photons is a huge problem for light-based quantum computation, they are working on some basic quantum codes that can protect the quantum information from photon loss error. These sorts of issues are crucial in the effort to scale up photonic quantum computation. - JR
  
  澳大利亚的一个小组和USTC同时实现了这一伟大的突破。
  
  重要的句子:
  Both groups have built rudimentary laser-based quantum
  computers that can implement Shor's algorithm - a mathematical routine capable of defeating today's most common encryption .研究成果发表在2007年12月19日出版的国际权威物理学最权威的期刊《 Physical Review Letters》上,标志着我国光学量子计算机研究达到了国际领先水平。
   November 2007, to be published in Physical Review Letters
  
  Demonstration of a compiled version of Shor's quantum factoring algorithm using photonic qubits
  
  Chao-Yang Lu, Daniel E. Browne, Tao Yang, and Jian-Wei Pan
  
  We report an experimental demonstration of a complied version of Shor's algorithm using four photonic qubits. We choose the simplest instance of this algorithm, that is, factorization of $N=15$ in the case that the period $r=2$ and exploit a simplified linear optical network to coherently implement the quantum circuits of the modular exponential execution and semi-classical quantum Fourier transformation. During this computation, genuine multiparticle entanglement is observed which well supports its quantum nature. This experiment represents an essential step toward full realization of Shor's algorithm and scalable linear optics quantum computation.
  
  2007 The American Physical Society.
  
  中国科技大学的这篇prl 似乎很有分量。两个月前,这篇论文还仅仅是预印本的时候,《新科学家》(new scientist)就报道了
  
  http://technology.newscientist.com/article/mg19526216.700
  
  Quantum threat to our secret data
  
  * 13 September 2007
  * Saswato Das
  * Magazine issue 2621
  
  IT MIGHT seem like an esoteric achievement of interest to only a handful of computer scientists, but the advent of quantum computers that can run a routine called Shor's algorithm could have profound consequences. It means the most dangerous threat posed by quantum computing - the ability to break the codes that protect our banking, business and e-commerce data - is now a step nearer reality.
  
  Adding to the worry is the fact that this feat has been performed by not one but two research groups, independently of each other. One team is led by Andrew White at the University of Queensland in Brisbane, Australia, and the other by Chao-Yang Lu (USTC的,第一作者;潘建伟是通信作者) of the University of Science and Technology of China, in Hefei. Both groups have built rudimentary laser-based quantum
  computers that can implement Shor's algorithm - a mathematical routine capable of defeating today's most common encryption ...
  
  
  潘建伟的论文被PRL接收后,还没有正式发表,德国的《创新报导》又发表了评论:
  
  http://www.innovations-report.de ... /bericht-99247.html
  
  A quantum computer breakthrough and dark matter stars
  (30.11.2007)
  Highlights in this issue: A quantum computer breakthrough and dark matter stars.
  
  Anzeige
  Quantum Computer Breakthrough
  
  Chao-Yang Lu, Daniel E. Browne, Tao Yang, and Jian-Wei Pan
  Physical Review Letters (forthcoming) &
  
  B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James , A. Gilchrist, and A. G. White
  Physical Review Letters (forthcoming)
  
  Two research groups have independently managed to experimentally solve a mathematical problem with light-based quantum computers. The simultaneous achievements appear to be the first experimental demonstrations of true (though rudimentary) quantum mechanical computations. Both groups manipulated quantum mechanically entangled photons to calculate the prime factors of the number 15.
  
  Although the physicists could have gotten the answer to the problem much more easily by querying an average elementary school child, the method both groups used involved a quantum mechanical approach commonly known as Shor's algorithm. Previous theoretical work has shown that the algorithm could potentially crack cryptographic codes that are practically unbreakable with non-quantum mechanical (classical) computers.
  
  While there's no great need to factor numbers as small as 15, the research demonstrates that quantum computation is feasible with existing technology and could in principle be scaled up to tackle problems that would take longer than the age of the universe to solve with any classical computer, but would require only minutes on a quantum computer.
  
  In addition to factoring large numbers and solving other challenging mathematical problems, quantum computers based on the work of these two groups could help model quantum mechanical problems in physics and chemistry (sehttp://xxx.lanl.gov/ftp/arxiv/papers/0710/0710.0278.pdf for an example of a quantum simulator experiment by C.-Y. Lu et al.), and lead to ultra high speed searching algorithms.
  
  Chao-Yang Lu (USTC的,第一作者;潘建伟是通信作者)and his group are currently expanding on their work by trying to manipulate larger numbers of quantum bits. In the long run, they plan to add quantum memory to their quantum computers, which could further increase the number of photons they can control. In addition, because the loss of photons is a huge problem for light-based quantum computation, they are working on some basic quantum codes that can protect the quantum information from photon loss error. These sorts of issues are crucial in the effort to scale up photonic quantum computation. - JR
  
  澳大利亚的一个小组和USTC同时实现了这一伟大的突破。
  
  重要的句子:
  Both groups have built rudimentary laser-based quantum
  computers that can implement Shor's algorithm - a mathematical routine capable of defeating today's most common encryption .
 2007年初,中国科技大学微尺度国家实验室潘建伟小组在《Nature·Physical》上发表论文,成功制备了国际上纠缠光子数最多的“薛定谔猫”态和单向量子计算机,刷新了光子纠缠和量子计算领域的两项世界记录,成果被欧洲物理学会和《Nature》杂志等广泛报道。
  
  在四月份,该小组提出并实验实现不需要纠缠辅助的新型光学控制非门,减少了量子网络电路的资源消耗。
  
  九月,该小组利用光子“超纠缠簇态”演示了单向量子计算的物理过程,实现了量子搜索算法,论文发表在《Physical Review Letters》上。
  
  最近,该小组又在国际上首次利用光量子计算机实现了Shor量子分解算法,研究成果发表在12月19日出版的国际最权威物理学期刊《Physical Review Letters》上,标志着我国光学量子计算研究达到了国际领先水平。
    
  这一系列高质量的工作已经获得了国际学术界的广泛关注和认可。
  
  2007年3月,潘建伟教授应邀和美国UIUC大学教授P. Kwiat,NIST教授D. Wineland,维也纳大学教授A. Zeilinger一起在美国物理年会新闻发布会上介绍了量子信息的最新进展。
  
  潘建伟教授还应邀在美国《光学和光子新闻》刊物上撰写了关于光学量子计算最新进展的综述文章。
  
  特别引人注目的是,11月16号出版的英国《新科学家》杂志在“中国崛起”的专栏中,把中国科大在量子计算领域取得的一系列成就作为中国科技崛起的重要代表性成果,进行了专门介绍。
这个,这个~~!!!!!!!!!!!!!!


太强了

:L
很多科大自己的人都不太相信这个教授弄得东西。结果人家就是弄出来了。强人呀。
上面那个是神舟计划,

下面两个是什么?

我的英文很烂
原帖由 bull 于 2008-2-16 20:05 发表
很多科大自己的人都不太相信这个教授弄得东西。结果人家就是弄出来了。强人呀。


成绩是巨大的,但是还要看看重复的情况。
原帖由 dadasuancai 于 2008-2-16 20:07 发表
上面那个是神舟计划,

下面两个是什么?

我的英文很烂


一个是关于伟大的长城防火墙的,另一个是关于干细胞的。
加拿大不是出了个什么第一台商用量子计算机吗
上面那个也不是神舟,是说创新性。
你和我一样的烂~~

:L

上面那个是说遨游宇宙吧?
http://www.people.com.cn/GB/channel5/745/20000821/196033.html
这是2000年人民网介绍的IBM的量子计算机
http://www.chinamet.com.cn/cn/meinfo/jmkx/details.jsp?id=20277
这里面太深奥了~~

估计都是第一吧·~
超级智能也许真得不远了.
基础理论,就是靠国家不断砸钱,才可能有所收获的。
现在还没有一个国家或者是公司把量子计算机给造出来,还不如DNA计算机还有一个模型能用
中国只是突破了一个相当重要的一个难点。

如果这则消息是去年的消息的话
我的天啊[:a3:]

以前在学校图书馆看到一篇描述量子计算机原理的文章。看了三四页后实在看不下去了。转换那个复杂啊。太让人自卑鸟:') 觉得自己简直不学无术啊:')

这个猛了,媲美“中常弹”啊:D
量子计算机要研制成功了,那机器人的人工智能就不远了
这个持怀疑态度,

量子计算机的负载程度和人脑差很远的,

现在有一种观点是,

人工智能和强大的计算能力是相互否定的。
量子计算机强在哪?
原帖由 勇敢在心 于 2008-2-16 21:21 发表
量子计算机强在哪?

建议你看看绝密飞行。也许就是美好的展望吧
这个现在可以说是纯而又纯的理论研究

不过米有理论就米有未来的工程实践
目前的量子计算应该还没有突破图灵机的范围

主要优势好像是在并行上
看不懂,听不懂`不知道你们在讨论什么``(我是我星来的)[:a3:]
原帖由 勇敢在心 于 2008-2-16 21:21 发表
量子计算机强在哪?

建议你看看《上帝会掷色子吗》这本书,网上应该有下的,写的非常好,吧这本书看完了,你大致就能明白微观尺度下面物质的一些神奇特性了!!!原子在同一时间内可以表示多种状态,可以带来本质上的并行运算
封面也太强势了......
原帖由 核聚变 于 2008-2-16 19:49 发表

我还买了这本杂志, 但是到现在还没有看... 丢脸了... 回去好好研究一下...
原帖由 marskiller 于 2008-2-16 20:41 发表
基础理论,就是靠国家不断砸钱,才可能有所收获的。

靠以下三点...
1) 钱/物 - 稳定的,持续的,足够的投入.
2) 人 - 聪明人, 不仅仅是中国人, 地球人都可以用.
3) 制度 - 合理的激励制度
发篇PRL……
够几十个博士毕业了
结果人家就是弄出来了。强人呀。:handshake
自己去看一下新语私的文章吧,这个不是新闻了。还有,这个东西和人工智能没有任何必然联系,他确实可以在理论上大大提高计算能力,但和人脑压根就没有关系。
千万不要太早搞出来,我还指望着读个微电子研究生呢...
硅晶集成电路的上限快要达到了,性能再想提升就得靠光脑和量脑了。
]]
]]
风云一时最后以昙花一现方式草草离场的研究方向和领域在历史上数不胜数,层出不穷。物理领域最近的例子就有混沌、分形、几何相位、高温超导理论、复杂性理论、数不清的宇宙学理论,甚至弦论等等,其他领域如生物医学、经济学应该更多。量子计算领域只
是更糟一点,呈现了上述领域的所有病态特征而尚未显示出一点起码的成果。
---------------------------------
这句话太BZ了,现代科学不就是不断的尝试中发展起来的吗?
又冒出一个世界上第一台?

似乎我多年前就听到IBM制造出这个东东的消息了。
中科院武汉分院的院长在公开的场合说过量子计算机在未来的二三十年没有应用的可能性。不过好像有哪个国家已经用量子计算机算了一个10以内的加减法了。
原帖由 核聚变 于 2008-2-17 18:31 发表
风云一时最后以昙花一现方式草草离场的研究方向和领域在历史上数不胜数,层出不穷。物理领域最近的例子就有混沌、分形、几何相位、高温超导理论、复杂性理论、数不清的宇宙学理论,甚至弦论等等,其他领域如生物医学 ...


不得不承认
圈子内不可避免有很多很多看上去很美而在可以预见的将来可能会全无价值的概念,中外皆然
从历史的角度来看当然谁也不能轻言一种理论无用
但是如果落实到自己选课题,还是小心一点的好

从这几年看来,高温超导啥的不好说,至少混沌/复杂性这块隐约就有炒过头的嫌疑
目前能看到的主要贡献好像还是局限在装饰艺术上,而量子计算会不会滑向同一个深渊,无人可知