我国迄今最大科学工程进入最后四分之一工期

来源:百度文库 编辑:超级军网 时间:2024/04/23 15:22:46
]]
好贴,顶
上海光源这个东西是非常牛X的,反正我看好多中科院的院所里自吹自擂的时候到要加上句"依托上海光源"的字样.    这个系统看来很满塞啊.;P ;P ;P    虽然带个"光"字,可不仅仅是光机所和应用物理所的事情哈.
上海光源的先进性能与国际地位

1)上海光源的先进性
性能价格比高:储存环的能量3.5GeV,在中能区光源中能量最高,性能优化在用途最广的X射线能区。利用近年来插入件技术的新进展,不仅可在光子能量为1~5keV产生最高耀度的同步辐射光,而且在5~20keV光谱区间可产生性能趋近6~8GeV高能量光源所产生的高耀度硬X光;
全波段:波长范围宽,从远红外直到硬X射线,且连续可调。利用不同波长的单色光,可揭示用其他光源无法得知的科学秘密;
高强度:总功率为600千瓦,是X光机的上万倍。光通量大于1015光子/(S.10-3bw)。高强度和高通量为缩短实验数据获取时间、进行条件难以控制的实验以及医学、工业应用提供了可能;
高耀度:其耀度是最强的X光机的上亿倍,主要光谱复盖区的光耀度为1017~1020光子/(S.mm2.mrad2.10-3bw)。高亮度为取得突破性科技成果提供了高空间分辨、高动量分辨和超快时间分辨的条件;
优良的脉冲时间结构:其脉冲宽度仅为几十皮秒,可以单束团或多束团模式运行,相邻脉冲间隔可调为几纳秒至微秒量级,能为研究化学反应动力过程、生命过程、材料结构变化过程和大气环境污染过程等提供正确可信的数据;
高偏振:上海光源中在电子轨道平面上放出的同步光是完全线极化的, 而离开电子轨道平面方向发射的同步光则是椭圆极化的,因而是研究具有旋光性的生物分子、药物分子和表现为双色性的磁性材料的有力工具;
准相干:上海光源从插入件引出的高耀度光具有部分相干性, 为众多前沿学科的显微全息成像分析开辟了道路;
高稳定性,可以提供十几到几十小时的稳定束流,光束位置稳定度仅约光斑的10%;
高效性:总共将建设近60条以上光束线和上百个实验站,给用户的供光机时将超过5000小时/年,每天可容纳几百名来自海内外不同学科领域或公司企业的科学家/工程师,夜以继日地在各自的实验站上使用同步辐射光;
灵活性:光源可运行于单束团、多束团、高通量、高亮度和窄脉冲等多种模式,可依据用户需求快速变换运行模式,以满足用户的多种需求;
前瞻性:首批光束线站的科学目标先进,能够满足我国多个学科领域对同步辐射应用的迫切需要,并至少具有30年科学寿命。
  2)建成后的水平和国际地位
SSRF能量居世界第四(仅次于日本SPring-8、美国APS、欧洲ESRF),性能超过同能区现有的第三代同步辐射光源,是目前世界上正在建造或设计中的性能最好的中能光源之一;
光源建造规模符合我国国情,投资适中,在宽广的光子能区具有好的性能价格比。光子能量范围优化在0.1~40keV。在5~20keV的硬X射线区,其耀度可接近大而昂贵的6~8GeV的第三代光源。在1~5keV能谱范围内的耀度居世界最高之列;
SSRF将在亚洲地区与日本SPring-8 (8GeV)、韩国PLS (2.5GeV)、中国台湾TLS (1.5GeV)和印度Indus-II (2.5GeV) 等高低能量的第三代同步辐射光源一起形成可以与美国和欧洲比拟的能量和性能分布合理的光源群,成为面向世界的同步辐射实验平台。
科学寿命大于30年。
1)上海光源的建设目标
  上海光源属中能第三代同步辐射光源,其电子束能量为3.5GeV,仅次于日本的SPring-8 (8GeV)、美国的APS(7GeV)和欧洲共同体的ESRF(6GeV),居世界第四。上海光源包括一台100MeV的电子直线加速器、一台能在0.5秒内把电子束从100MeV加速到3.5GeV全能量的增强器和一台3.5GeV的高性能电子储存环,以及首批建成的7+1条光束线站。上海光源储存环平均流强300mA,最小发射度4纳米弧度,束流寿命大于10小时。配以先进的插入件后,可在用户需求最集中的光子能区(0.1~40keV)产生高通量、高耀度的同步辐射光,光子亮度大于1019。储存环共有40块弯转二极磁铁、16个6.5米的标准直线节和4个12米的超长直线节,具有安装26条插入件光束线、36条弯铁光束线和若干条红外光束线等共60多条光束线的能力,它可同时为近百个实验站供光。首批建造的5条基于插入件的光束线站,分别是生物大分子晶体学线站、XAFS线站、硬X射线微聚焦及应用线站、X射线成像与生物医学应用线站、软X射线扫描显微线站;2条基于弯转磁铁的光束线站分别是高分辨衍射线站和X射线散射线站。此外,还将建造一个基于软X射线光束线的X射线干涉光刻分支线站。
2)上海光源的技术难度
上海光源是极其复杂的大科学工程,包含有众多系统,它们分别涉及超导高频及低温技术、超高真空技术、高精度数字化电源技术、高性能磁铁及机械准直技术、高性能束流诊断技术、先进控制技术,以及先进光束线技术等多项先进技术,部件研制及系统集成难度极高;特别是须在保证各系统性能的前提下达到很低的故障率,以实现提供十几到几十小时的稳定束流、年运行5000小时以上供光时间的预定目标。
高耀度要求储存环具有小发射度。上海光源的水平发射度仅约4纳米弧度,光源点水平束斑尺寸约150微米、垂直束斑尺寸仅约10微米。然而,低发射度要求储存环的动力学孔径只能很小,也带来了光束的各种不稳定性、束流寿命短等难题。可见,如何优化光源的动力学性能以提高束流寿命,是一大难题。
为保持束流稳定,其轨道的垂直稳定度须控制在1微米以内,如何实现这指标是建造上海光源的一大难点。严格控制地基的不均匀沉降、储存环隧道和实验大厅地板的扭曲和变形,严格限定储存环隧道内空气温度的变化和光源设备冷却水温度的变化,监测和控制各种振动源,优化装置的机械结构,采用振动的隔离和阻尼措施,提高电源稳定度和降低纹波,并应用轨道反馈手段等,使光源稳定性达到世界一流水平。






上海光源建设时间表

建筑安装工程: 2004年12月-2006年9月
设备加工与制造: 2005年3月-2007年11月
设备安装与系统调试:2005年7月-2008年3月
调束与试运行: 2008年4月-2009年4月
LZ能否通俗的说说,不要长篇大论,我眼花
是啊,那么多术语,这个到底是什么啊
上海光源(SSRF)的建设目标是建造一台高性能价格比的中能第三代同步辐射光源,包括一台100MeV的电子直线加速器、一台3.5GeV增强器、一台3.5GeV的电子储存环和首批建造的七条光束线及相应的实验站。电子储存环的最高流强为300mA,最低发射度为3.9 nm·rad,配以先进的插入件后,可在用户需求最集中的光子能区(0.1~40keV)产生高通量、高耀度的同步辐射光,最高光谱亮度可超过1019 photons/(s·mm2 ·mrad2 ·0.1%·BW)。

SSRF具有安装26条插入件光束线、36条弯铁光束线和若干条红外光束线等六十多条光束线的潜力,它可以同时为近百个实验站供光。首批建造4条基于插入件的光束线站,分别是生物大分子晶体学、硬X射线微聚集及应用、X射线成像及医学应用、软X射线扫描显微;2条基于弯转磁铁的光束线站,分别是高分辨衍射与散射、XAFS;一条组合线站,即X射线光刻与微纳加工。

上海光源工程座落在上海浦东张江高科技园区,该园区是国家级高科技园区、园区拥有良好的建设条件。

上海光源工程地块位于张江高科技园区的杨桥村南部,工程用地范围约20万平方米,上海张江(集团)有限公司以零地价转让给上海光源工程使用。一期拟建约45000平方米,区域地势平坦、自然地面绝对标高为海拔3.8米。地块基本呈矩形,东西长分别为588至615米,南北宽为333米,总面积约为20万平方米,一期建筑面积为50857平方米。区域地势平坦、自然地面绝对标高为海拔3.800米。场地周边交通方便。

建址区域水、电、气、通讯等基础设施齐全。张江园区可供两路互为独立的供电电源,供水系统和东海优质天然气。上海已建设国际一流的宽带计算机数字通讯平台,主干网浦东通讯枢纽建在张江园区,浦东宽带接入网可以给用户提供高速宽带上网手段。

主体建筑拟设于地块东侧,综合实验楼设于主体建筑东南侧,便于联系与设备的运输;动力设备用房设于主体建筑东侧,尽量邻近主体建筑,以减少管线投资和能源的损耗。综合办公楼则位于场地中部与主体建筑紧邻,面迎主要入口,便于同外界的联系。生活区设在地块的西南部,与工作区相对分离,利于创造相对独立的安静环境。地块的西部与北部预留未来科学研究发展用地。
该工程钢结构总重5000余吨。结构新颖、构件复杂,钢屋盖由8片异型双向弯曲的"花瓣"旋转而成,整体结构宛如"鹦鹉螺"造型,尤其是异形单层网壳,曲面多变,国内罕见。
上海光源的应用前景
  同步辐射为许多前沿学科领域的研究提供了一种最先进又不可替代的工具。利用同步辐射实验技术开展实验研究所涉及的学科之众多,应用的领域之广泛,是其它大科学装置无法比拟的。
  生命科学和医药学与人类健康生活息息相关,也是同步辐射光得到广泛应用的重要领域。同步辐射X射线衍射方法是当前测定生物大分子结构的最有力手段,是研究生命现象与生物过程的利器。英国科学家J. Walker和美国科学家 R. Mackinnon 籍助同步辐射研究生物分子的结构与功能,取得了突破性的成就,先后荣获1997年度和2003年度诺贝尔化学奖。研究病毒以及病毒与人体内发生作用的生物分子的结构,对于弄清病毒的致病机理与过程至关重要,利用这些结构信息有针对性地进行药物设计、合成与筛选,可以大大加快新药物研制的进程。利用这种方法,国外已成功研制出用于治疗艾滋病的药物,对于降低艾滋病的死亡率起到了良好的作用。在2003年我国出现SARS疫情后不及,我国科学家就利用同步辐射光成功测定了SARS病毒主蛋白酶的结构,为研制抵御SARS病毒的药物提供了重要信息。在医学诊断方面,同步辐射光也展示出了非常重要的应用前景。心血管疾患常导致突发性死亡,是威胁人类生命的主要疾病之一。采用同步辐射光源X射线的造影技术可以实现安全、高清晰的心血管成像,为心血管疾病的早期诊断提供安全、快速的诊断方法。在肿瘤诊断方面,利用同步辐射光的高分辨特点,可以发现很小的肿瘤,实现肿瘤的早期诊断以提高肿瘤的治愈率。
  材料科学是支撑高技术经济发展必不可少的基础,未来的技术革命将在很大程度上取决于新型材料的发明,例如半导体、高分子聚合物、合金、陶瓷、超导材料、复合材料、金属玻璃以及纳米材料等,这些具有异乎寻常性能的新型材料将在计算机、信息、通讯、航空航天、机器人、医药、微机电和能源等新兴产业中获得越来越广泛的应用。利用上海光源所产生的高亮度同步辐射光束,可以揭示材料中原子的精确构造和得到有价值的电磁结构参数等信息,它们既是理解材料性能的"钥匙",也隐含着发明新颖材料的原理来源。
人类赖以生存的自然环境是脆弱的,资源也是有限的。环境污染、生态失衡、资源短缺、地球变暖和自然灾害等,都对人类的生存构成了直接威胁,地球和环境科学面临的许多挑战正成为世界性的课题。分子环境科学以同步辐射X射线谱学技术作为主要分析手段,能在分子水平上描述环境污染物的形态,研究污染物的迁移和转化的复杂化学过程,从而评估污染风险和确定污染治理方案。而基于分子环境科学所建立起来的受环境污染植物的修复技术,以其自然、生态、绿色的特点而越来越受到重视与欢迎,可望产生重大的社会效益和经济效益。在地球科学研究方面,利用高亮度同步辐射X射线作为微探针,将能够深入地了解地壳深处和地幔中矿物的演变和转化,对于矿床地质、矿物、岩石、探矿以及地球化学研究起着重要的作用。
  微电子机械系统(MEMS)是一种高智能度、高集成度的系统。科学家预言,20年后MEMS产出的社会和经济效益将相当于今天微电子技术所产生的。在微细加工技术中,利用同步辐射X光深度光刻技术,已经研制出微型传感器、微型光电部件、微型马达、微型齿轮、微电子开关和微型喷嘴等,同步辐射光将在MEMS制造技术开发方面将发挥重要作用。随着集成电路的集成度越来越高,科学界预计,对线度在几十纳米及以下的集成电路,同步辐射光刻技术将有可能成为主要的光刻手段。
在石化及化学工业中,催化剂起着核心作用,对产出有重要影响。利用同步辐射光可以研究催化机理和催化剂的特性,这有助于研究发明新型催化剂,其结果直接影响到石油化工的效率和产出。在高分子材料改性和开发研究方面,同步辐射光所起的作用受到越来越多的关注。移动通讯和便携式电脑市场的迅猛发展导致对质轻、价低、续航时间长的可充电电池的需求激增,各国的制造商正在为掌握新的电化学反应以开发高性能的电池而陈兵鏖战,而同步辐射光正是他们手中的新式武器。
  在许多其它产业研发与检测方面,如超大规模集成电路中硅晶片中的痕量杂质探测分析、飞机发动机和航天器的疲劳测试、纸浆无氯漂白工艺改进、化妆品效果分析乃至新口味凝胶食品的开发等,同步辐射光都将大显其非凡身手。
注释:
John Walker:因阐明了ATP合成的酶作用机制而获得1997年化学奖;
Roderick Mackinnon:因阐明了离子通道的结构与机制而获得2003年化学奖;
太长了,眼花,而且全是专业术语,你能简单介绍不?
原帖由 牛头战士 于 2007-12-7 20:38 发表
太长了,眼花,而且全是专业术语,你能简单介绍不?

看9楼的
为什么啥玩意都要弄到上海?造船厂,大飞机 ,再加上这个还有数不清的,上海的战略目标太多喽
虽然俺不太懂,但是要顶!
原帖由 67754250 于 2007-12-7 20:41 发表
为什么啥玩意都要弄到上海?造船厂,大飞机 ,再加上这个还有数不清的,上海的战略目标太多喽

北京等也有不少大项目的
这是中国科学院上海应用物理研究所的活
上海光源主要技术设计指标
科普园地

人类文明史是利用和开发光资源的历史

   人类生存和发展从来就离不开对“光”的利用和开发,人类的文明史是一部利用和开发“光资源”的历史。“光”是一个很大的家族,其中“可见光”只是“光家族”中的一员。依波长的不同,光可分为无线电波、微波、红外、可见光、紫外、真空紫外、软X射线、硬X射线和伽马(γ)射线等。
    光的波长或能量决定了它与物质的相互作用类型,如“可见光”照射人体时,会被反射到我们的眼睛,并被视网膜/视神经所感觉而“看到”人体;而当X射线光照射人体时,则会穿透过人体,并在X光底片上留下透过程度的影像纪录,医院里给病人做X光透视就是这样。
    光波具有衍射现象,用光探测物体或分辨两物体时,光的波长应当与物体的大小或两物体的间距相近或更短。因此,天文学家要探测宇宙星球,可以选用无线电波;航空管理者要跟踪飞机,可以选用微波(雷达)。而科学家要研究比“可见光”波长更短的物体,要“看清”病毒、蛋白质分子甚至金属原子等微观物体,必须选用与这些微观物体大小相近或更短的波长的光束,来照射微观物体,利用光束在物质中的衍射、折射、散射等能够检测到的特性,或者利用光束与物体相互作用产生的光激发、光吸收、荧光、光电子发射等特性,来探究未知的微观世界。

     新人工光源带来人类文明的新进步

    光是由光源产生的,如太阳、蜡烛和电灯。其中太阳是天然光源,蜡烛和电灯是人工光源。由于可利用的天然光源所产生的光仅占整个光家族的很小部分,所以人类一直在努力开发和利用各种各样的人工光源。任何一种新人工光源的发明和利用,都标志着人类文明新的进步,如伦琴发明的X射线、爱迪生发明的电灯、二次大战中发明的微波、20世纪60年代发明的激光等,都是人工光源发展史上的重大里程碑,它们都极大地促进了人类文明的进步。20世纪60年代末出现的同步辐射光源,是被誉为“神奇的光”的又一种人工光源,它在基础科学研究和高技术产业开发应用研究中都有广泛的用途。

 同步辐射光源的发展历史

   电磁场理论早就预言:在真空中以光速运动的相对论带电粒子在二极磁场作用下偏转时,会沿着偏转轨道切线方向发射连续谱的电磁波。1947年人类在电子同步加速器上首次观测到这种电磁波,并称其为同步辐射,后来又称为同步辐射光,并称产生和利用同步辐射光的科学装置为同步辐射光源或装置。
   30多年来,同步辐射光源已经历了三代的发展,它的主体是一台电子储存环。第一代同步辐射光源的电子储存环是为高能物理实验而设计的,只是“寄生”地利用从偏转磁铁引出的同步辐射光,故又称“兼用光源”;第二代同步辐射光源的电子储存环则是专门为使用同步辐射光而设计的,主要从偏转磁铁引出同步辐射光;第三代同步辐射光源的电子储存环对电子束发射度和大量使用插入件进行了优化设计,使电子束发射度比第二代小得多,因此同步辐射光的亮度大大提高,并可从波荡器等插入件引出高亮度、部分相干的准单色光。第三代同步辐射光源根据其光子能量覆盖区和电子储存环中电子束能量的不同,又可进一步细分为高能光源、中能光源和低能光源。凭借优良的光品质和不可替代的作用,第三代同步辐射光源已成为当今众多学科基础研究和高技术开发应用研究的最佳光源。

    同步辐射光的特性

★宽波段:同步辐射光的波长覆盖面大,具有从远红外、可见光、紫外直到X射线范围内的连续光谱,并且能根据使用者的需要获得特定波长的光。

★高准直:同步辐射光的发射集中在以电子运动方向为中心的一个很窄的圆锥内,张角非常小,几乎是平行光束,堪与激光媲美。

★高偏振:从偏转磁铁引出的同步辐射光在电子轨道平面上是完全的线偏振光,此外,可以从特殊设计的插入件得到任意偏振状态的光。

★高纯净:同步辐射光是在超高真空中产生的,不存在任何由杂质带来的污染,是非常纯净的光。

★高亮度:同步辐射光源是高强度光源,有很高的辐射功率和功率密度,第三代同步辐射光源的X射线亮度是X光机的上亿倍。

★窄脉冲:同步辐射光是脉冲光,有优良的脉冲时间结构,其宽度在10-11~10-8 秒(几十皮秒至几十纳秒)之间可调,脉冲之间的间隔为几十纳秒至微秒量级,这种特性对“变化过程”的研究非常有用,如化学反应过程、生命过程、材料结构变化过程和环境污染微观过程等。

★可精确预知:同步辐射光的光子通量、角分布和能谱等均可精确计算,因此它可以作为辐射计量——特别是真空紫外到X射线波段计量——的标准光源。

  此外,同步辐射光还具有高度稳定性、高通量、微束径、准相干等独特而优异的性能。

 先进的第三代同步辐射光源

   上海同步辐射装置(Shanghai Synchrotron Radiation Facility,简称SSRF),是一台世界先进的中能第三代同步辐射光源,总投资计划12亿人民币。上海同步辐射装置的电子储存环电子束能量为3.5GeV(35亿电子伏特),仅次于世界上仅有的3台高能光源(美、日、欧各1台),居世界第四,超过其它所有的中能光源;X射线的亮度和通量被优化在用户最多的区域。

上海同步辐射装置是国家级大科学装置和多学科的实验平台,由全能量注入器、电子储存环、光束线和实验站组成。全能量注入器提供电子束并使其加速到所需能量,电子储存环储存电子束并提供同步辐射光,光束线对引出的同步辐射光进行传输、加工,提供给实验站上的用户使用。

(一)提供电子束的全能量注入器
    全能量注入器包括电子直线加速器、增强器和注入/引出系统,其作用是向电子储存环提供所需的电子束。电子枪产生的能量为10万电子伏特的电子束,先被约40米长的电子直线加速器加速到3亿电子伏特能量,然后被注入到周长约158米的增强器中,由增强器继续加速到35亿电子伏特,再经过注入/引出系统注入到电子储存环。这种把电子束加速到了电子储存环运行能量的注入器叫全能量注入器。整个注入过程必须通过一套专门设计的时序控制系统来“精确指挥”。

(二)产生同步辐射光的电子储存环
    电子储存环是一个周长为432米的闭合环形高科技装置,超过一个学校400米环形跑道的操场,用来储存35亿电子伏特高能电子束。电子储存环是同步辐射光源的主体与核心,其性能直接决定了同步辐射光源性能的优劣。它由真空度为10-9乇的超高真空室、高精度磁铁系统、高频加速腔、高灵敏的束流探测仪器和控制系统等组成。高精度磁铁系统是储存环的主要部件,包括40台二极偏转磁铁、200台四极聚焦磁铁和140台六极色品磁铁。根据设计要求,这些磁铁按特定顺序沿环排列,形成一个呈20周期的消色散磁聚焦结构,每周期含有一段7米或5米长的直线段。为保证向用户提供在空间位置上高度稳定的同步辐射光,电子束轨道的稳定需要被控制在微米量级。

(三)光束线——“桥梁”
    光束线沿着电子储存环的外侧分布,它起着用户实验站与电子储存环之间的桥梁作用,对从电子储存环引出的同步辐射光,按用户要求进行再加工,如分光、准直、聚焦等,并输送到用户实验站。它包括安装在真空管道内的一系列精密光学系统,涉及的主要光学元件有准直狭缝、聚焦镜、单色仪(光栅或晶体)和反射镜等,这些特殊的现代光学器件对材料、工艺、精度、控制和冷却等都有十分苛刻的要求。此外它还有快速真空阀和辐射防护闸以实施真空和辐射安全的连锁保护。

(四)探索自然奥秘的实验站
    实验站是科学家和工程师利用同步辐射光揭开科学秘密、开发高新技术产品的综合科技平台。在这里,同步辐射光被“照射”到各种各样的实验样品上,同时科学仪器纪录下实验样品的各种反应信息或变化,经高速计算机处理后变成一系列反映自然奥秘的曲线或图像。

   上海同步辐射装置的特性

   上海同步辐射装置除了具有第三代同步辐射光源共同的特性之外,还具有:(1)高效性:总共将建设近60条光束线和上百个实验站,所有这些实验站都是为准确探测同步辐射光与实验样品的各种相互作用而精心设计的。首批拟建的7条光束线、实验站和4个后备实验站的设计方案已于1999年底通过了国内外的专家评审,它们是:硬X射线生物大分子晶体学、硬X射线吸收精细结构(X AFS)、硬X射线高分辨衍射与散射、硬X射线微聚焦及应用、医学应用、软X射线相干显微学、LIGA及光刻,以及红外等后备实验站。今后,上海同步辐射装置将陆续向广大用户提供扫描光电子能谱、扫描透射X射线显微、X射线荧光显微、X射线非弹性散射等实验站。向用户的供光机时将超过5000小时/年,每天可容纳几百名来自海内外不同学科领域或公司企业的科学家/工程师,日以继夜地在各自的实验站上同时使用同步辐射光。(2)灵活性:上海同步辐射装置可运行于单束团、多束团、高通量、高亮度和窄脉冲等多种模式,可依据用户需求快速变换运行模式,以满足用户的多种需求。(3)前瞻性:上海同步辐射装置的科学寿命至少30年,电子直线加速器同时用于发展深紫外区高增益自由电子激光。
]]
看样子很强大
2006年6月22日,SSRF加速器集成单元完成了试安装工作(包括储存环机械集成单元和增强器机械集成单元主体设备、隧道墙模型、储存环前端模型、水管和电缆等),并于23日召开“加速器集成单元工艺评估会”,来自高能物理所、近代物理所的近10位专家对设备样机(首件)的工艺和集成单元总体工艺进行了综合评估。
2007年1月18日,SSRF第一阶段的建安建设任务已基本完成,将全面转入设备安装调试阶段。已完成的有主体建筑的建筑安装以及35kV变电站、动力设备用房、综合实验楼等辅助建筑的安装,综合办公楼、用户招待所及餐厅的装饰工程。公用设施工程设备的安装基本完成,已开始调试和试运行。
2007年4月2日,SSRF用于储存环超导高频腔功率源的第一台300kW发射机系统顺利通过现场测试验收。该发射机系统从法国THALES公司引进,包括可提供56KV高压电源系统、500MHz、300KW速调管系统、前置预放大器以及其他附属设施等。该发射机各项运行参数经测量完全符合工程要求的技术指标,并顺利通过了在300kW下连续运行50小时无故障的最终测试,为即将展开的高频系统的集成迈出了成功的第一步。
4月16日,装载着预组装的增强器标准单元 #1共架结构的卡车缓缓驶入主体建筑的货运入口,SSRF增强器正式开始单元的隧道安装。两个完整的高频腔也同日安装就位。增强器是一台环形同步加速器,周长180米,共分为28个单元,其作用是将电子束团从150MeV加速至3.5GeV,然后注入到电子储存环中。
2007年5月15日,SSRF实现了直线加速器的总体出束调试,测得的电子束数据初步达到设计要求,加速器隧道外围辐射剂量测试也在安全范围内,标志着上海光源直线加速器全面进入调束阶段。150MeV直线加速器是SSRF的电子注入器。该直线加速器采用2998Mhz的大功率微波源和基于纳秒栅控电子枪技术的电子源,为满足高束流品质的要求,在国内首次使用了500Mhz的高Q值次谐波聚束器。直线加速器输出的电子束可具有灵活的时间结构、高流强和适中的发射度,使电子储存环能方便地运行在单束团或多束团的不同状态下,以满足光源用户对光脉冲时间宽度的选择要求(从几十皮秒到几百纳秒),并且有较短的注入时间,为今后的光源应用提供了手段。
2007年6月11日,已完成预组装的SSRF储存环第13单元(C13)2号共架组件开始起吊,标志着上海光源储存环设备总体安装正式启动。在此之前,上海应用物理所与上海市安装公司的工程人员在储存环隧道与内技术走廊内合作进行了储存环第10单元(C10)的设备试安装与调试。
楼主是上海应用物理所的吗?
去年敝人去上海参加第一届全国核物理学术研讨会,就曾赴张江工地参观,呵呵。
应该精华。:victory:
那是不是可以理解成 这个光源总体水平世界第四?
这个一定要顶,看上去就很科幻,无论是建筑物还是技术,将来电影的拍摄好场地
上个星期刚刚去过.直线加速器和小加速器已经在调试了,说是有辐射,不能进去.就到主加速器里面去看了看.
主加速器就是高速电子的轨道,电子转弯时放出的电磁波就是同步辐射光.所以我们看到的那个大环其实是一个很大的环形大厅,最内圈是加速器,中间沿着加速器的切线方向可以引出光束线,建一圈试验站.现在主要是在搞加速器,试验站初步只做了6个,据说最多可以做100多个.
同步辐射光主要是它的能量很高,相干性很好,所以可以做许多精细结构的探测,比如普通的X光胶片只能看出骨骼(还有点模糊),但是同步辐射光透射的影像就能看到软组织结构,而且轮廓非常清晰.
当然实际上它可以探测分子级甚至亚分子级结构,比如蛋白质和DNA等等.也可以研究一些材料的内部结构.
另外硬X光波段能量很高,可以直接对物质的表面和内部进行精细结构的加工,比如芯片,微型马达等等.

他们说这个地方条件还不错,想去的可以报考中科院的研究生,选上海应用物理研究所.
不过再顺便说一句,这个顶实在是太腐败了,就为了好看据说就花了1个亿...
原帖由 国务顾问 于 2007-12-7 20:18 发表
是啊,那么多术语,这个到底是什么啊


1,同步辐射产生于电流圆周运动。。。电子受磁场约束,做圆周运动,因此处于不断变速中,从而产生电磁。这个电磁波就是同步辐射。
2,同步辐射的意义在于提供光源。。。。它是非常优秀的光源,属于那种大家都向往的类型。。。我们平时说的显微术、衍射光谱啥的都  需要光源的。。
3,中国现在有一个同步辐射国家实验室。。在中国科技大学西校区。。。。。离我现在距离大概一百米,,嘿嘿。。
太深了,我文盲。。不过还是顶
不懂啊,太专业了.慢慢学ing......
怎么发这个版来了
这么看来俺学校的那个该下岗了:') ,不过其实能用的工作站真正用了还不到一半
据说光是上海的那个顶子,就顶好几个俺们学校的家伙花的钱多:@ :')
]]
:( 天书一般

:Q :Q :Q :Q
周长400多米,这个尺寸不大吧。回旋半径越大,对粒子的筛选和加速也越有效。
和世界领先水平差距还很大!:@
最后一张就是发不上来呀,这次该成了吧
虽然看着很满了,其实还是有很大潜力可挖
张江有很多半导体企业,肯定是这东西的大客户:D