外媒:电离引擎 驱动中国的星际野心

来源:百度文库 编辑:超级军网 时间:2024/03/29 18:05:22


http://www.spacedaily.com/reports/Electric_thruster_propels_Chinas_interstellar_ambitions_999.html

Electric thruster propels China's interstellar ambitions
电离引擎 驱动中国的星际野心
by Staff Writers
Beijing (XNA) Jun 09, 2015
北京2015年6月9日


An electric thruster, creating a thrust as gentle as a breath blowing out a candle, could send a spacecraft to Mars, so long as it keeps "blowing" and accelerating the craft over time. Electric propulsion is regarded as one of the top cutting-edge space technologies as it could make humans go into deep space at a lower cost than other forms of propulsion.

The few countries mastering the technology have kept it confidential. Relying on its own efforts, China has developed the state-of-the-art technology, following the United States, Russia, Europe and Japan, and hopes to enter the international electric propulsion communication satellite market.

China plans to send its first full electric propulsion satellite into orbit around 2020, providing broadband communication data transmission to China and neighboring regions, according to Wang Min, deputy chief designer of the communication satellite, at the China Academy of Space Technology (CAST).

China also plans to launch a hybrid propulsion communication satellite at the end of 2016. The electric propulsion system would be used in China's space station in the future, Wang says.

Electric propulsion systems are mainly of the ion thruster or Hall thruster types. They are essentially similar, using electricity to ionize the propellant, usually xenon, and accelerating the ions to produce thrust.

The biggest advantage of electric propulsion is that it uses a tenth of the amount of propellant required by traditional chemical propulsion systems. A typical 5-tonne chemical propulsion communication satellite contains three tonnes of fuel. With an electric propulsion system, it would only need 300 kg of propellant, Wang says.

"The benefit is obvious. The weight of the satellite can be greatly decreased, so a rocket can send two satellites into orbit at the same time; or we can launch a cheap, small rocket to carry the satellite, which will greatly save on launch costs. We can also put more equipment on the satellite to improve its functions," Wang says.

With electric propulsion, a satellite's life would no longer be restricted by the amount of fuel it carried. The designed lifespan of a communication satellite would extend from the current 15 years to 20 years, says Wang.

However, the main drawback of electric propulsion is that its thrust is still low, so it cannot be used on carrier rockets and spacecraft that need to quickly enter orbit.

The application of electric propulsion could greatly improve the communication satellite's competitiveness in the commercial market, because communication satellites always need thrust to keep their positions on orbit.

In addition, the advantage of saving propellant could help interstellar probes travel farther in space.

So far, five deep space probes, propelled by electric thrusters, have explored the moon, asteroids and a comet. Japan's "Hayabusa" was the first to bring samples from an asteroid back to earth and U.S. spacecraft "Dawn" was the first to probe two asteroids in one mission.

"Electric propulsion technology will play an important role especially in manned deep space exploration," says Wang.

It's estimated that a manned Mars spacecraft, including landing and return systems, could weigh about 1,500 tonnes if using chemical propulsion. Since the most powerful carrier rocket at present can only carry around 100 tonnes of load to near-earth orbit, the spacecraft would need to be assembled in orbit at great cost.

With electric propulsion, the weight of the spacecraft could be reduced to 300 tonnes, experts say.

China launched the Shijian-9 satellite in 2012 to test the functions of two experimental electric thrusters.

Currently, China's electric thrusters generate up to 5 kilowatts. CAST plans to develop a 50-kilowatt electric thruster by 2020. An array of 40 electric thrusters of 50 kilowatts could send a 300-tonne spacecraft to Mars in 200 days, experts say.
最后一段:
当前中国的离子推进器功率为5千瓦,CAST(中国航天科技5院)计划到2020年发展出50-千瓦的电离推进器,
专家说,一个由此50-千瓦每个组成的40个阵列推进器可以在200天内将一300吨的飞船送往火星

长5→近地轨道→组装→电离推进器阵列的300吨飞船→火星,TG看来登火路演图都筹备好了- -
王专家说,使用电离推进系统去火星,飞船质量可由1500吨的化学推进型剧减到只需要300吨(1500吨,300吨均含往返、登陆系统)





http://www.spacedaily.com/reports/Electric_thruster_propels_Chinas_interstellar_ambitions_999.html

Electric thruster propels China's interstellar ambitions
电离引擎 驱动中国的星际野心
by Staff Writers
Beijing (XNA) Jun 09, 2015
北京2015年6月9日


An electric thruster, creating a thrust as gentle as a breath blowing out a candle, could send a spacecraft to Mars, so long as it keeps "blowing" and accelerating the craft over time. Electric propulsion is regarded as one of the top cutting-edge space technologies as it could make humans go into deep space at a lower cost than other forms of propulsion.

The few countries mastering the technology have kept it confidential. Relying on its own efforts, China has developed the state-of-the-art technology, following the United States, Russia, Europe and Japan, and hopes to enter the international electric propulsion communication satellite market.

China plans to send its first full electric propulsion satellite into orbit around 2020, providing broadband communication data transmission to China and neighboring regions, according to Wang Min, deputy chief designer of the communication satellite, at the China Academy of Space Technology (CAST).

China also plans to launch a hybrid propulsion communication satellite at the end of 2016. The electric propulsion system would be used in China's space station in the future, Wang says.

Electric propulsion systems are mainly of the ion thruster or Hall thruster types. They are essentially similar, using electricity to ionize the propellant, usually xenon, and accelerating the ions to produce thrust.

The biggest advantage of electric propulsion is that it uses a tenth of the amount of propellant required by traditional chemical propulsion systems. A typical 5-tonne chemical propulsion communication satellite contains three tonnes of fuel. With an electric propulsion system, it would only need 300 kg of propellant, Wang says.

"The benefit is obvious. The weight of the satellite can be greatly decreased, so a rocket can send two satellites into orbit at the same time; or we can launch a cheap, small rocket to carry the satellite, which will greatly save on launch costs. We can also put more equipment on the satellite to improve its functions," Wang says.

With electric propulsion, a satellite's life would no longer be restricted by the amount of fuel it carried. The designed lifespan of a communication satellite would extend from the current 15 years to 20 years, says Wang.

However, the main drawback of electric propulsion is that its thrust is still low, so it cannot be used on carrier rockets and spacecraft that need to quickly enter orbit.

The application of electric propulsion could greatly improve the communication satellite's competitiveness in the commercial market, because communication satellites always need thrust to keep their positions on orbit.

In addition, the advantage of saving propellant could help interstellar probes travel farther in space.

So far, five deep space probes, propelled by electric thrusters, have explored the moon, asteroids and a comet. Japan's "Hayabusa" was the first to bring samples from an asteroid back to earth and U.S. spacecraft "Dawn" was the first to probe two asteroids in one mission.

"Electric propulsion technology will play an important role especially in manned deep space exploration," says Wang.

It's estimated that a manned Mars spacecraft, including landing and return systems, could weigh about 1,500 tonnes if using chemical propulsion. Since the most powerful carrier rocket at present can only carry around 100 tonnes of load to near-earth orbit, the spacecraft would need to be assembled in orbit at great cost.

With electric propulsion, the weight of the spacecraft could be reduced to 300 tonnes, experts say.

China launched the Shijian-9 satellite in 2012 to test the functions of two experimental electric thrusters.

Currently, China's electric thrusters generate up to 5 kilowatts. CAST plans to develop a 50-kilowatt electric thruster by 2020. An array of 40 electric thrusters of 50 kilowatts could send a 300-tonne spacecraft to Mars in 200 days, experts say.
最后一段:
当前中国的离子推进器功率为5千瓦,CAST(中国航天科技5院)计划到2020年发展出50-千瓦的电离推进器,
专家说,一个由此50-千瓦每个组成的40个阵列推进器可以在200天内将一300吨的飞船送往火星

长5→近地轨道→组装→电离推进器阵列的300吨飞船→火星,TG看来登火路演图都筹备好了- -
王专家说,使用电离推进系统去火星,飞船质量可由1500吨的化学推进型剧减到只需要300吨(1500吨,300吨均含往返、登陆系统)



50*40=2000千瓦,这么多电怎么来?


40x50千瓦 = 2000千瓦;得上核发电机;或者大型电池阵列,比国际空间站还大一倍

40x50千瓦 = 2000千瓦;得上核发电机;或者大型电池阵列,比国际空间站还大一倍
能源只能用核能了,空间堆吧。。。
我擦嘞,英文懒得看,这中文里说的北京航天科技大学是什么鬼!?
还有。。。这文章和北航专家有啥关系啊。。。
chenxiao86 发表于 2015-9-26 23:25
我擦嘞,英文懒得看,这中文里说的北京航天科技大学是什么鬼!?
China Academy of Space Technology
中国航天科技学院?不知道怎么翻译了,总之是一家科技机构,,,

锻铁 发表于 2015-9-26 23:23
40x50千瓦 = 2000千瓦;得上核发电机;或者大型电池阵列,比国际空间站还大一倍


行星级登陆,核推进是必须的吧。


找到篇2013年的新闻:中国推出快速火星飞船方案 采用大功率核电推进

航天五院空间大功率核电推进研究获重要成果
http://www.cannews.com.cn/2013/1226/67727.shtml
日前,中国航天科技集团公司五院502所和总体部合作,在科技部“863”课题“核动力航天器总体技术和安全研究”的支持下,顺利完成了“空间大功率核电推进方案”研究工作,这是我国在新型推进技术领域取得的又一重要研究成果。


锻铁 发表于 2015-9-26 23:23
40x50千瓦 = 2000千瓦;得上核发电机;或者大型电池阵列,比国际空间站还大一倍


行星级登陆,核推进是必须的吧。


找到篇2013年的新闻:中国推出快速火星飞船方案 采用大功率核电推进

航天五院空间大功率核电推进研究获重要成果
http://www.cannews.com.cn/2013/1226/67727.shtml
日前,中国航天科技集团公司五院502所和总体部合作,在科技部“863”课题“核动力航天器总体技术和安全研究”的支持下,顺利完成了“空间大功率核电推进方案”研究工作,这是我国在新型推进技术领域取得的又一重要研究成果。

China Academy of Space Technology
中国航天科技学院?不知道怎么翻译了,总之是一家科技机构,,,
China Academy of Space Technology是中国空间技术研究院,也就是航天科技五院,中国卫星和载人航天研制的主力
ydc02 发表于 2015-9-26 23:32
行星级登陆,核推进是必须的吧。
是的,核电推进才是深空登陆的必需品
必须依赖长征9,近地轨道到火星转移轨道需要的速度增量太高,电推不合适
能源只能用核能了,空间堆吧。。。
空间堆能量密度在内太阳系还不如薄膜太阳能电池板阵列
是的,核电推进才是深空登陆的必需品
电推就够了,外太阳系核电合适些
是用空间堆吧,不用核防护,不太重。电推阵列,听上去很美。
楠宫萧vn 发表于 2015-9-27 07:05
空间堆能量密度在内太阳系还不如薄膜太阳能电池板阵列
属实,字数不定。
20年内实现不了,估计

ydc02 发表于 2015-9-26 23:28
China Academy of Space Technology
中国航天科技学院?不知道怎么翻译了,总之是一家科技机构,,,


。。。反正北航是Beihang university
ydc02 发表于 2015-9-26 23:28
China Academy of Space Technology
中国航天科技学院?不知道怎么翻译了,总之是一家科技机构,,,


。。。反正北航是Beihang university
必须依赖长征9,近地轨道到火星转移轨道需要的速度增量太高,电推不合适
确实 要是飞木星用核反应堆还差不多
楠宫萧vn 发表于 2015-9-27 07:05
空间堆能量密度在内太阳系还不如薄膜太阳能电池板阵列
這空間堆是指STG?
chenxiao86 发表于 2015-9-27 09:43
。。。反正北航是Beihang university
就是CAST,航天五院
http://baike.baidu.com/link?url= ... Bj8B5Q5Jz8Jbcae7dTq
锻铁 发表于 2015-9-26 23:23
40x50千瓦 = 2000千瓦;得上核发电机;或者大型电池阵列,比国际空间站还大一倍
现在的问题是在太空中想要处理几十MW的废热非常难,20MW的实际输出,空间堆效率按20%计算则意味着80MW的废热。
失落的天堂 发表于 2015-9-27 11:14
现在的问题是在太空中想要处理几十MW的废热非常难,20MW的实际输出,空间堆效率按20%计算则意味着80MW的 ...
核电推进是看起来很美,等把散热器和防护盾的重量加上就没有吸引力了,太阳能电推是不二选择。
ydc02 发表于 2015-9-26 23:28
China Academy of Space Technology
中国航天科技学院?不知道怎么翻译了,总之是一家科技机构,,,
中国空间技术院
核电推进是看起来很美,等把散热器和防护盾的重量加上就没有吸引力了,太阳能电推是不二选择。
实际上SEP也没有太高吸引力,一楼1000千瓦200天奔火明显太理想化了,从近地轨道进入霍曼转移轨道需要4200米以上速度增量,小推力持续点火消耗的速度增量更高。
如果说的是霍尔电推,按50千瓦电功率、2.5牛推力、3000秒比冲的理想水平(毛子SPT-290的技术水平,比NASA的NEXT技术水平都高),20台并联也就50牛推力,300吨的飞船,一天不过提供14米每秒左右的速度增量,200天还在地球轨道上转悠呢←_←
核电推进是看起来很美,等把散热器和防护盾的重量加上就没有吸引力了,太阳能电推是不二选择。
如果在EML2或者高环地轨道出发,将入射所需速度增量降低到1400米左右,还能在3个月内实现火星轨道入射,近火制动1100米左右速度增量同样要消耗2到3个月……
事实上这种地球轨道打包一波流的效率非常低,将300吨的飞船按功能拆成三部分,将SEP的功率压缩到500千瓦级,回程飞船和火表上升器慢悠悠全程电推,去程飞船电推化学能混合推进放弃近火制动直接再入。
楠宫萧vn 发表于 2015-9-27 11:50
实际上SEP也没有太高吸引力,一楼1000千瓦200天奔火明显太理想化了,从近地轨道进入霍曼转移轨道需要4200 ...
"小推力持续点火消耗的速度增量更高。"这句话是不是有问题?
"小推力持续点火消耗的速度增量更高。"这句话是不是有问题?
重力损失更大,逃逸轨道速度增量都是按近地点点火计算的。为了降低重力损失,要么近地点大推力一次完成,要么如嫦娥一号还有三哥的火星探测器一般在每次轨道近地点间断点火。
而电推则是全程启动,重力损失非常大,所需的实际速度增量远大于理论值。
实际上SEP也没有太高吸引力,一楼1000千瓦200天奔火明显太理想化了,从近地轨道进入霍曼转移轨道需要4200 ...
4200是大推力快速变轨的情况,小推力连续推进重力损耗极大,都要过7000了
4200是大推力快速变轨的情况,小推力连续推进重力损耗极大,都要过7000了
而且纯电推300吨级飞船这也太恐怖了,毕竟载荷也就是往返轨道生活舱和两三个登陆舱,纯载荷不超过150吨;如果只是往返程深空生活舱,也就是40吨左右……
搞不好也是混合推进方案,这个300吨有相当一部分是化学燃料,部分速度增量由化学能火箭发动机提供。
楼上的质疑不少,不过我通常都是信专家不信网友
xmyyc 发表于 2015-9-27 22:42
楼上的质疑不少,不过我通常都是信专家不信网友
高中物理,a=F/m,推力可由国际上类似功率级电推进器类比,质量已知,一天86400秒,自己算算每天能提供多大的速度增量,再看看LEO到MOI需要多大速度增量不就得了……
类似的话早就有了,张福林还说他的VASIMR推进器90天奔火呢
xmyyc 发表于 2015-9-27 22:42
楼上的质疑不少,不过我通常都是信专家不信网友
更何况这个报道没有任何消息来源可证实可信度,而且文中提到的离子电推进器同功率相比霍尔电推推力普遍低一个数量级(但是比冲一般高一倍以上)
事实上美国ARM项目LEO轨道出发方案中,仅重18.8吨的小行星重定向飞行器电推系统就有40千瓦电功率,但是到达逃逸轨道就需要在地球轨道绕2.2年
楠宫萧vn 发表于 2015-9-27 11:50
实际上SEP也没有太高吸引力,一楼1000千瓦200天奔火明显太理想化了,从近地轨道进入霍曼转移轨道需要4200 ...
毛子在研的是
100KW 的空间堆,目标是 1MW的 空间堆。
10个 1MW的空间堆 -电推引擎 组成 组合式 推进单元 。
10个 推进单元 组成引擎阵列 然后推动飞船飞向火星。
毛子在研的是
100KW 的空间堆,目标是 1MW的 空间堆。
10个 1MW的空间堆 -电推引擎 组成 组合式 推进单 ...
毛子那个核电推进重点不是电推,是核热,实际上是把核热推进和电推进并联了,冷却反应堆的冷却剂直接排放,相当于小推力核热发动机
燃料电池或许是提供电能的解决方案
同样重量的燃料,用电化学反应消耗,比直接烧掉经济的多,而且可以提供维生系统需要的水和热能
高中物理,a=F/m,推力可由国际上类似功率级电推进器类比,质量已知,一天86400秒,自己算算每天能提供多 ...
这个逻辑听起来和用黑障认定df21d是吹牛一样

xmyyc 发表于 2015-9-28 07:18
这个逻辑听起来和用黑障认定df21d是吹牛一样


东风1D末寻的的论文一堆,和我们讨论的这个问题有关吗?
xmyyc 发表于 2015-9-28 07:18
这个逻辑听起来和用黑障认定df21d是吹牛一样


东风1D末寻的的论文一堆,和我们讨论的这个问题有关吗?
东风24D末寻的的论文一堆,和我们讨论的这个问题有关吗?
反对的逻辑是一样的

真正的工程师(都不用到专家级别)都不会用这种逻辑的
更何况这个报道没有任何消息来源可证实可信度,而且文中提到的离子电推进器同功率相比霍尔电推推力普遍低 ...
这个逻辑倒是正确的,或者说这是正确的第一步,就是先核实消息本身
反对的逻辑是一样的

真正的工程师(都不用到专家级别)都不会用这种逻辑的
我只是举例而已,我前面已经给你了计算过程。
这段300吨200天应该是借鉴毛子那个太阳能电推进方案,但是毛子那个是15兆瓦电功率