理想的火箭形状和特别的发射方式

来源:百度文库 编辑:超级军网 时间:2024/03/29 04:03:52
美国九十年代搞过实验,让化学火箭地面发射单级入轨,现有的轻质材料还不够轻。材料是一方面,另外形状也使得燃料罐的重量降不下来。

如果不用考虑气动阻力,理想的火箭形状应该是一个大圆球上面一个小圆球,整体象一个葫芦。小圆球是载荷,大圆球是单级火箭及燃料。在给定重量的前提下,球体能容纳最多的燃料。

为了让葫芦火箭顺利发射轨,需要把葫芦预先提升到两万米以上的高空。那里的空气密度只有地面的百分之十。

今天看到一则新闻,西门子公司造出一种电动机,功率密度高达每公斤五千瓦。按这个功率密度造出合适的电动机,进而搞出多轴升力体,地面电缆供电,可以把葫芦火箭送到两万米高空。发射成本就降下来了。
美国九十年代搞过实验,让化学火箭地面发射单级入轨,现有的轻质材料还不够轻。材料是一方面,另外形状也使得燃料罐的重量降不下来。

如果不用考虑气动阻力,理想的火箭形状应该是一个大圆球上面一个小圆球,整体象一个葫芦。小圆球是载荷,大圆球是单级火箭及燃料。在给定重量的前提下,球体能容纳最多的燃料。

为了让葫芦火箭顺利发射轨,需要把葫芦预先提升到两万米以上的高空。那里的空气密度只有地面的百分之十。

今天看到一则新闻,西门子公司造出一种电动机,功率密度高达每公斤五千瓦。按这个功率密度造出合适的电动机,进而搞出多轴升力体,地面电缆供电,可以把葫芦火箭送到两万米高空。发射成本就降下来了。
超导电机应该可行
关键是葫芦火箭能造多大,现代航空器太小了,特别是旋翼航空器。估计又是LEO不到1吨的小不点啊,综合成本可能和空射火箭没啥区别。

还真是这样,300吨的飞机安-225是最大的飞机,相同吨位对应的航海300吨的船只算小艇,对应的300吨的运载火箭只能算LEO10吨左右的中型运载火箭罢了。别扯燃料重量,葫芦火箭发射不需要燃料?
撸主你说的不是N1吗?
2万米的电缆的重量考虑没有。
tianfei1974 发表于 2015-4-21 09:58
2万米的电缆的重量考虑没有。
用高压电可以减轻重量。
也可以用微波激光等变通的方式。
导弹武库核潜艇 发表于 2015-4-21 09:11
关键是葫芦火箭能造多大,现代航空器太小了,特别是旋翼航空器。估计又是LEO不到1吨的小不点啊,综合成本可 ...
多轴飞行器的特点是可以象拼积木一样扩大,可以搞十轴百轴千轴。

葫芦火箭按千吨算,搞个五百轴的够了,每轴旋翼提供两吨的净升力。
brysj 发表于 2015-4-21 09:17
撸主你说的不是N1吗?
老美的单级实验机的图片我看过,就像一个圆锥形的油罐。
你说的N1是什么?
大娃成功入轨……二娃成功入轨……

这样的结构尽管最优化,但是气动难优化
平行异面 发表于 2015-4-21 15:38
多轴飞行器的特点是可以象拼积木一样扩大,可以搞十轴百轴千轴。

葫芦火箭按千吨算,搞个五百轴的够了 ...
千轴可靠性行吗?太可怕了!!!!!简直是旋翼的海洋啊
导弹武库核潜艇 发表于 2015-4-21 16:22
千轴可靠性行吗?太可怕了!!!!!简直是旋翼的海洋啊
多铆蒸刚超进化——
多铆电刚!

平行异面 发表于 2015-4-21 15:46
老美的单级实验机的图片我看过,就像一个圆锥形的油罐。
你说的N1是什么?


N1火箭的名头非常大。苏联登月用的火箭,地面级并联30台发动机,总质量类似美国的土星5号火箭。它发射4次炸了4次。第一次约在12.2公里的高空爆炸,第二次在发射台上,第三次在1公里的高空,第四次在40公里高空。四次事故都于发动机有关。
这是N1的结构图,网上找的。最右边的是完整结构,从右向左看。
平行异面 发表于 2015-4-21 15:46
老美的单级实验机的图片我看过,就像一个圆锥形的油罐。
你说的N1是什么?


N1火箭的名头非常大。苏联登月用的火箭,地面级并联30台发动机,总质量类似美国的土星5号火箭。它发射4次炸了4次。第一次约在12.2公里的高空爆炸,第二次在发射台上,第三次在1公里的高空,第四次在40公里高空。四次事故都于发动机有关。
这是N1的结构图,网上找的。最右边的是完整结构,从右向左看。
你算过20公里长可以承载这么大电流的电缆的自重么?
平行异面 发表于 2015-4-21 15:38
多轴飞行器的特点是可以象拼积木一样扩大,可以搞十轴百轴千轴。

葫芦火箭按千吨算,搞个五百轴的够了 ...
“每轴旋翼提供两吨的净升力”,这单个旋翼直径多大?五百,这个多轴飞行器的总的直径得多大?
五百个轴的链接处要足够的“结实”,其质量是很大的。

小孩拿着玩具飞机的的垂直尾翼来回抖,飞机没事。要是某个东西捏住波音747的的垂尾来回抖,747就简体了。
在大到一定程度的机械上,不存在搭积木似的扩大。
建高楼用的塔吊,也都有最大使用高度。
大娃成功入轨……二娃成功入轨……

这样的结构尽管最优化,但是气动难优化
气动无所谓,结构实际上不优化,支架很重,N1干质比很差。
KV2 发表于 2015-4-21 17:19
你算过20公里长可以承载这么大电流的电缆的自重么?
没算过,但这个问题我现在就可以告诉你解决方案:
20公里长的输电线揽,每隔两米系一个直径一米的氢气球。
黑火药 发表于 2015-4-21 17:43
“每轴旋翼提供两吨的净升力”,这单个旋翼直径多大?五百,这个多轴飞行器的总的直径得多大?
五百个轴 ...

不用梁架结构,具体结构借鉴硬式飞艇。
升力体主体结构是一个救生圈样子的硬式飞艇。
救生圈的内外环附着大量升力旋翼。
用高压电可以减轻重量。
也可以用微波激光等变通的方式。
一个没有实现的东西去完成另外一个东西,这逻辑能力还需要发明吗?直接把火箭吹上太空去就可以了
导弹武库核潜艇 发表于 2015-4-21 16:22
千轴可靠性行吗?太可怕了!!!!!简直是旋翼的海洋啊
其实简单的重复结构可靠性才高,而且还具备高冗余度。
举个例子,买一千台苹果电脑,拿到实验室同时开机,允许百分之一的故障率。这根本没难度。
平行异面 发表于 2015-4-21 21:59
没算过,但这个问题我现在就可以告诉你解决方案:
20公里长的输电线揽,每隔两米系一个直径一米的氢气球 ...
你算过遇到横风的问题么?
熊大是球类爱好者
2015-4-22 06:29 上传



黑火药 发表于 2015-4-21 17:16
N1火箭的名头非常大。苏联登月用的火箭,地面级并联30台发动机,总质量类似美国的土星5号火箭。它发射4 ...
这个是示意图,燃料箱不是这样单个的近于球型的,因为生产地点和发射地点不在一个地方,而这么大的直径铁路无法直接运输,是拆开来运输。燃料箱是1米径左右的长条型状,由若干个并联组成,干重特别大,又装了拆,拆了运,运了在装,N1火箭就这样被折腾的没有一个能用的,全炸了。
这个是示意图,燃料箱不是这样单个的近于球型的,因为生产地点和发射地点不在一个地方,而这么大的直径铁 ...
不是球形燃料箱吗?

brysj 发表于 2015-4-22 10:20
不是球形燃料箱吗?


这是上面级,关于多个小燃料箱并联,我是在1980年左右的《航空知识》上看到的图。是偶然在地摊看到,现在非常后悔没有及时买下来。再去就没了。
brysj 发表于 2015-4-22 10:20
不是球形燃料箱吗?


这是上面级,关于多个小燃料箱并联,我是在1980年左右的《航空知识》上看到的图。是偶然在地摊看到,现在非常后悔没有及时买下来。再去就没了。
不是球形燃料箱吗?
上面级受力小,也没有空气动力考虑。你起飞级必须有整流罩,而且储箱之间要有承力结构支撑,这样下来火箭干质比必然捉急。柱状燃料箱充分利用火箭内部空间,而且能承受一定的垂直压力,比球形优越。
这是上面级,关于多个小燃料箱并联,我是在1980年左右的《航空知识》上看到的图。是偶然在地摊看到,现 ...
从示意图来看,是不是带有隔舱的球形燃料箱?整体来看是球形,分开来看是西瓜瓣或橘子造型
当年看的时候,就印象很深,是巨多的小柱状储箱按蜂巢一样排列的,但也许是当时国内的猜测图。不过后来又有文章说因为运输的原因,N1是分解开来运输到发射场的,想想那么大的直径,铁路是没法整体运输的。
空中发射啊楼主,搞个运输机就行了,费那劲搞个多轴。四旋翼玩多了吧。
这个想法没什么意思,要我说,卫星就应该做成一小块一小块的。
用电磁炮入轨。
然后像乐高积木一样拼起来。
miaomiaomiao 发表于 2015-4-22 06:29
楼主喜欢糖葫芦?好了,糖葫芦来了,楼主请吃吧。
这N多级球形发动机,看上去像固体的
https://rocketry.wordpress.com/tag/rockoon/

miaomiaomiao 发表于 2015-4-22 06:29
楼主喜欢糖葫芦?好了,糖葫芦来了,楼主请吃吧。


这家现在改方案改成山寨Falcon1了
http://www.arcaspace.com/en/haas2c.htm



               
HAAS 2B         HAAS 2C         AIRSTRATO         ABOUT US         MULTIMEDIA
       
text/css



Haas 2C

The orbital rocket Haas 2C, named after Conrad Haas (1509-1579), Austrian-Romanian medieval rocket pioneer, is able to launch 400 kg of payload to low earth orbit. The rocket has two stages that are both fueled with liquid oxygen and kerosene.



Diameter        
4 ft
       
1.2 m
Length        
60 ft
       
18 m
Lift-off weight        
35,000 lb
       
16,000 kg
Lift-off thrust        
44,000 lbf
       
20,000 kgf
Payload to LEO        
880 lb
       
400 kg


text/css



First stage Executor rocket engine

The first stage is powered by the Executor, an open cycle gas generator rocket engine, that uses liquid oxygen and kerosene and has a vacuum thrust of 52,000 lbf (24,000 kgf). This engine aims to keep low construction costs, without sacrificing the high performance. In order to reach the objectives, the team decided to use composite materials and aluminum alloys on a large scale. The composite materials offer low construction costs and lower the component weight. Composite materials were used in the construction of the combustion chamber and the nozzle, gas generator and some elements in the turbo-pumps.



text/css




The combustion chamber and the nozzle are built from two layers. The internal layer is made of silica fiber and phenolic resin, and the external one is made of carbon fiber and epoxy resin. The phenolic resin reinforced with silica fiber pyrolyzes endothermally in the combustion chamber walls, releasing gases like oxygen and hydrogen, leaving a local carbon matrix. The gases spread through the carbon matrix and reach the internal surface of the wall where they meet the hot combustion gases and act as a cooling agent. Furthermore, the engine is equipped with a cooling system that injects on the internal wall 10 percent of the total kerosene mass.
text/css

The gas generator has the same cooling principle and also the intake and exhaust turbine volutes, that are constructed from the same composite materials mentioned above. Using these light materials makes the Executor engine to have a thrust/mass ratio of 110. The team estimates that they will succeed to improve this ratio as the tests proceed, a safety margin being implemented in the prototype phase.

The pump volutes are made of 6062 type aluminum alloy. The pump rotors are made through lathing and milling using 304 type steel. The supersonic turbine is made of refractory steel, both the core and the blades. The turbine rotation speed is 20.000 rpm and has a 1,5 MW power. The intake gas temperature is 1150 degrees Fahrenheit (620 deg. Celsius). The main engine valves are made of 6060 type aluminum and are pneumatically powered, without adjustment. The gas generator valves are ball typed, pneumatically powered and can be adjusted. The engine injector and the liquid oxygen intake pipes are made of 304 L type steel and the kerosene intake pipe is made of composite materials. The engine has the possibility to direct the thrust by 5 degrees on two axis. The articulated system is made of composite materials and high grade steel alloy. The engine is rotated using two hydraulic pistons that use kerosene from the pump exhaust system.


text/css



Executor rocket engine, technical data and performances

Diameter        
2.3 ft
       
0.7 m
Length        
7.2 ft
       
2.2 m
Fuel        
LOX + kerosene
       
LOX + kerosene
Flow rate        
187 lb/sec
       
85 kg/sec
Weight        
484 lb
       
220 kg
Sea level thrust        
44,000 lbf
       
20,000 kgf
Vacuum thrust        
53,000 lbf
       
24,000 kgf
Impulse (vacuum)        
312 sec
       
312 sec
Thrust weight ratio        
110
       
110



text/css



Second stage Venator rocket engine

The second stage is powered by the Venator, pressure fed rocket engine, that has a vacuum thrust of 5,500 lbf (2,500 kgf).

The Venator rocket engine has no vanes on the main pipes. It uses instead burst disks, between the tanks and the engine. The second stage is pressurized at 2 bars at lift-off and after the first stage burn-out, the second stage will be pressurized at 16 bars. At that pressure the disks will burst and the fuel will flow through the engine. Using burst disks, the mass of the stage will decrease while the reliability will increase.

The engine injector and the liquid oxygen intake pipes are made of 304 L type steel and the kerosene intake pipe is made of composite materials. The whole second stage is spin stabilized at 60 rpm, immediately after staging. The spin will be created using four helium RCS.



text/css



Venator rocket engine, technical data and performances

Max. diameter        
2.64 ft
       
0.8 m
Length        
4.62 ft
       
1.4 m
Weight        
145 lb
       
66 kg
Fuel        
LOX + kerosene
       
LOX + kerosene
Flow rate        
17.8 lb/sec
       
8.1 kg/sec
Chamber pressure        
145 psi
       
10 bars
Vacuum thrust        
5,500 lb
       
2,500 kgf
Impulse (vacuum)        
317 sec
       
317 sec



text/css


Mission 8

At the beginning of 2012, ARCA launched Mission 8, a series of five flights, at 110,000 ft. The main objective of Mission 8 was to test propulsion and avionics equipment for the Haas 2C launcher.




Other programs

IAR-111 EXCELSIOR
HELEN
STABILO
DEMONSTRATOR
EXOMARS         News Archive

ARCHIVE 2014
ARCHIVE 2012-2013
ARCHIVE 2009-2011
ARCHIVE 2002-2008         Info

NEWSLETTER
CONTACT



© 2014 ARCA SPACE CORPORATION



miaomiaomiao 发表于 2015-4-22 06:29
楼主喜欢糖葫芦?好了,糖葫芦来了,楼主请吃吧。


这家现在改方案改成山寨Falcon1了
http://www.arcaspace.com/en/haas2c.htm



               
HAAS 2B         HAAS 2C         AIRSTRATO         ABOUT US         MULTIMEDIA
       
text/css



Haas 2C

The orbital rocket Haas 2C, named after Conrad Haas (1509-1579), Austrian-Romanian medieval rocket pioneer, is able to launch 400 kg of payload to low earth orbit. The rocket has two stages that are both fueled with liquid oxygen and kerosene.



Diameter        
4 ft
       
1.2 m
Length        
60 ft
       
18 m
Lift-off weight        
35,000 lb
       
16,000 kg
Lift-off thrust        
44,000 lbf
       
20,000 kgf
Payload to LEO        
880 lb
       
400 kg


text/css



First stage Executor rocket engine

The first stage is powered by the Executor, an open cycle gas generator rocket engine, that uses liquid oxygen and kerosene and has a vacuum thrust of 52,000 lbf (24,000 kgf). This engine aims to keep low construction costs, without sacrificing the high performance. In order to reach the objectives, the team decided to use composite materials and aluminum alloys on a large scale. The composite materials offer low construction costs and lower the component weight. Composite materials were used in the construction of the combustion chamber and the nozzle, gas generator and some elements in the turbo-pumps.



text/css




The combustion chamber and the nozzle are built from two layers. The internal layer is made of silica fiber and phenolic resin, and the external one is made of carbon fiber and epoxy resin. The phenolic resin reinforced with silica fiber pyrolyzes endothermally in the combustion chamber walls, releasing gases like oxygen and hydrogen, leaving a local carbon matrix. The gases spread through the carbon matrix and reach the internal surface of the wall where they meet the hot combustion gases and act as a cooling agent. Furthermore, the engine is equipped with a cooling system that injects on the internal wall 10 percent of the total kerosene mass.
text/css

The gas generator has the same cooling principle and also the intake and exhaust turbine volutes, that are constructed from the same composite materials mentioned above. Using these light materials makes the Executor engine to have a thrust/mass ratio of 110. The team estimates that they will succeed to improve this ratio as the tests proceed, a safety margin being implemented in the prototype phase.

The pump volutes are made of 6062 type aluminum alloy. The pump rotors are made through lathing and milling using 304 type steel. The supersonic turbine is made of refractory steel, both the core and the blades. The turbine rotation speed is 20.000 rpm and has a 1,5 MW power. The intake gas temperature is 1150 degrees Fahrenheit (620 deg. Celsius). The main engine valves are made of 6060 type aluminum and are pneumatically powered, without adjustment. The gas generator valves are ball typed, pneumatically powered and can be adjusted. The engine injector and the liquid oxygen intake pipes are made of 304 L type steel and the kerosene intake pipe is made of composite materials. The engine has the possibility to direct the thrust by 5 degrees on two axis. The articulated system is made of composite materials and high grade steel alloy. The engine is rotated using two hydraulic pistons that use kerosene from the pump exhaust system.


text/css



Executor rocket engine, technical data and performances

Diameter        
2.3 ft
       
0.7 m
Length        
7.2 ft
       
2.2 m
Fuel        
LOX + kerosene
       
LOX + kerosene
Flow rate        
187 lb/sec
       
85 kg/sec
Weight        
484 lb
       
220 kg
Sea level thrust        
44,000 lbf
       
20,000 kgf
Vacuum thrust        
53,000 lbf
       
24,000 kgf
Impulse (vacuum)        
312 sec
       
312 sec
Thrust weight ratio        
110
       
110



text/css



Second stage Venator rocket engine

The second stage is powered by the Venator, pressure fed rocket engine, that has a vacuum thrust of 5,500 lbf (2,500 kgf).

The Venator rocket engine has no vanes on the main pipes. It uses instead burst disks, between the tanks and the engine. The second stage is pressurized at 2 bars at lift-off and after the first stage burn-out, the second stage will be pressurized at 16 bars. At that pressure the disks will burst and the fuel will flow through the engine. Using burst disks, the mass of the stage will decrease while the reliability will increase.

The engine injector and the liquid oxygen intake pipes are made of 304 L type steel and the kerosene intake pipe is made of composite materials. The whole second stage is spin stabilized at 60 rpm, immediately after staging. The spin will be created using four helium RCS.



text/css



Venator rocket engine, technical data and performances

Max. diameter        
2.64 ft
       
0.8 m
Length        
4.62 ft
       
1.4 m
Weight        
145 lb
       
66 kg
Fuel        
LOX + kerosene
       
LOX + kerosene
Flow rate        
17.8 lb/sec
       
8.1 kg/sec
Chamber pressure        
145 psi
       
10 bars
Vacuum thrust        
5,500 lb
       
2,500 kgf
Impulse (vacuum)        
317 sec
       
317 sec



text/css


Mission 8

At the beginning of 2012, ARCA launched Mission 8, a series of five flights, at 110,000 ft. The main objective of Mission 8 was to test propulsion and avionics equipment for the Haas 2C launcher.




Other programs

IAR-111 EXCELSIOR
HELEN
STABILO
DEMONSTRATOR
EXOMARS         News Archive

ARCHIVE 2014
ARCHIVE 2012-2013
ARCHIVE 2009-2011
ARCHIVE 2002-2008         Info

NEWSLETTER
CONTACT



© 2014 ARCA SPACE CORPORATION


平行异面 发表于 2015-4-21 15:38
多轴飞行器的特点是可以象拼积木一样扩大,可以搞十轴百轴千轴。

葫芦火箭按千吨算,搞个五百轴的够了 ...
以直升的的效率为例,在3000米高度提供2吨的升力需要500千瓦。200吨就需要10万千瓦,按你“每公斤五千瓦”的功率密度光电动机就有20吨,这还没算旋翼和其它机械部份。而且3000米高度大气相对密度是20000米高度的6倍多。产生同样的升力~
平行异面 发表于 2015-4-21 21:59
没算过,但这个问题我现在就可以告诉你解决方案:
20公里长的输电线揽,每隔两米系一个直径一米的氢气球 ...
那还不如直接用一推气球把火箭升上去。
当年看的时候,就印象很深,是巨多的小柱状储箱按蜂巢一样排列的,但也许是当时国内的猜测图。不过后来又有 ...
貌似还真是铁路运输的
当年看的时候,就印象很深,是巨多的小柱状储箱按蜂巢一样排列的,但也许是当时国内的猜测图。不过后来又有 ...
柱状储箱并联是土星1吧。
暗夜流星 发表于 2015-4-22 13:23
这个想法没什么意思,要我说,卫星就应该做成一小块一小块的。
用电磁炮入轨。
然后像乐高积木一样拼起来 ...
为什么我想到的是《铁壁阿童木》里面的机器人宇宙船?
emellzzq 发表于 2015-4-22 14:39
那还不如直接用一推气球把火箭升上去。
对啊,我怎么没想到这条?

还是版主高明!
KV2 发表于 2015-4-22 15:44
为什么我想到的是《铁壁阿童木》里面的机器人宇宙船?
哈哈,握手!
我的灵感也是来自那里!
KV2 发表于 2015-4-22 15:45
对啊,我怎么没想到这条?

还是版主高明!
技术上很难实现,小火箭可以,大的不行。
航天港上有过讨论。

http://www.9ifly.cn/forum.php?mo ... 3&fromuid=16188