清华大学突破----------------宏观尺度 ...

来源:百度文库 编辑:超级军网 时间:2024/04/20 06:17:40
来源:清华官网http://news.tsinghua.edu.cn/publ ... 2225201571098_.html

  清华新闻网11月4日电(通讯员 龚华)近日,清华大学化工系魏飞教授团队与清华大学微纳米力学与多学科交叉创新研究中心、北京大学信息学院合作,在超润滑领域取得重大突破,在世界上首次检测到了大气环境下厘米以上长度碳纳米管管层间的超润滑现象。所实现的超润滑尺度比以前报道结果的最高值高出3个数量级,同时所得到的摩擦剪切强度比以前报道结果的最低值降低了4个数量级。相关成果以《Superlubricity in Centimetres-Long Double-Walled Carbon Nanotubes under Ambient Conditions》 (大气环境下厘米级长度双壁碳纳米管上的超润滑)为标题于2013年11月3日在线发表在国际纳米领域权威学术期刊《自然—纳米技术》(Nature Nanotechnology)上。《自然—纳米技术》还同期刊出了专题评论文章,邀请世界著名摩擦理论专家、以色列特拉维夫大学的Michael Urbakh教授对这一重大发现给予评论。文章的第一作者为清华大学化工系博士生张如范。
  摩擦现象一直是人类面临的最具挑战性的问题之一。全世界约1/3至1/2的一次性能源由摩擦过程消耗;工业发达国家因摩擦磨损造成的损失高达GDP的5%-7%。在微观尺度,由于材料比表面积增大,使得摩擦现象更加显著。因此,随着现代制造技术的发展,当系统尺寸缩小到微纳米尺度时,界面摩擦成为制约器件性能和寿命的关键因素。解决摩擦磨损问题的根本途径是实现固体界面之间的极低摩擦甚至零摩擦,即超润滑。
  超润滑(superlubricity) 是20世纪90年代早期由日本学者平野元久(Motohisa Hirano)提出的,也称结构润滑(structural lubricity),它是指当晶体表面以非公度形式接触时,有可能出现界面摩擦和磨损几乎为零的现象。过去二十年中所发现的超润滑现象主要是在纳米尺度和高真空条件下实现的,实现宏观尺度上的超润滑不仅要求固体表面具有超高的模量,而且要求在宏观尺度上原子级平整,无缺陷与位错,如此苛刻的条件使得人们普遍认为大尺度下几乎不可能实现超润滑。
……………………




来源:清华官网http://news.tsinghua.edu.cn/publ ... 2225201571098_.html

  清华新闻网11月4日电(通讯员 龚华)近日,清华大学化工系魏飞教授团队与清华大学微纳米力学与多学科交叉创新研究中心、北京大学信息学院合作,在超润滑领域取得重大突破,在世界上首次检测到了大气环境下厘米以上长度碳纳米管管层间的超润滑现象。所实现的超润滑尺度比以前报道结果的最高值高出3个数量级,同时所得到的摩擦剪切强度比以前报道结果的最低值降低了4个数量级。相关成果以《Superlubricity in Centimetres-Long Double-Walled Carbon Nanotubes under Ambient Conditions》 (大气环境下厘米级长度双壁碳纳米管上的超润滑)为标题于2013年11月3日在线发表在国际纳米领域权威学术期刊《自然—纳米技术》(Nature Nanotechnology)上。《自然—纳米技术》还同期刊出了专题评论文章,邀请世界著名摩擦理论专家、以色列特拉维夫大学的Michael Urbakh教授对这一重大发现给予评论。文章的第一作者为清华大学化工系博士生张如范。
  摩擦现象一直是人类面临的最具挑战性的问题之一。全世界约1/3至1/2的一次性能源由摩擦过程消耗;工业发达国家因摩擦磨损造成的损失高达GDP的5%-7%。在微观尺度,由于材料比表面积增大,使得摩擦现象更加显著。因此,随着现代制造技术的发展,当系统尺寸缩小到微纳米尺度时,界面摩擦成为制约器件性能和寿命的关键因素。解决摩擦磨损问题的根本途径是实现固体界面之间的极低摩擦甚至零摩擦,即超润滑。
  超润滑(superlubricity) 是20世纪90年代早期由日本学者平野元久(Motohisa Hirano)提出的,也称结构润滑(structural lubricity),它是指当晶体表面以非公度形式接触时,有可能出现界面摩擦和磨损几乎为零的现象。过去二十年中所发现的超润滑现象主要是在纳米尺度和高真空条件下实现的,实现宏观尺度上的超润滑不仅要求固体表面具有超高的模量,而且要求在宏观尺度上原子级平整,无缺陷与位错,如此苛刻的条件使得人们普遍认为大尺度下几乎不可能实现超润滑。
……………………


image0010.jpg (21.67 KB, 下载次数: 9)

下载附件 保存到相册

2013-11-21 12:13 上传



有意思
尽早转化为生产力最好
这个很厉害
摩擦减少了,地球会不会变冷啊?
拭目以待   
fdbiology 发表于 2013-11-22 10:39
摩擦减少了,地球会不会变冷啊?
不会,只是乐趣会减少。
tai0105 发表于 2013-11-22 15:14

不会,只是乐趣会减少。
润滑了才有乐趣吧?来自: Android客户端
解决这个问题后永动机有可能出现啊!!不过输出等于输入而已....但能耗为0啊!
宏观尺度超润滑,我想歪了…………
lz太懒,文章转帖一半,应用部分才有有趣的联想
超润滑实验速度:从蜗牛爬飙至时速90公里

来源:科技日报 2013-7-11 林莉君

  清华大学和以色列特拉维夫大学的研究人员合作发现,原本仅限于学术领域的超润滑现象可以让微器件以每小时90公里的速度发生相对滑动。未来可能的应用包括小型化的硬盘读写磁头、用于无线通讯的高频振荡器以及其他依赖高速运动的微器件。

  清华大学微纳米力学中心主任郑泉水教授课题组的这一研究成果近日发表在美国《物理评论快报》上,并被美国物理学会新闻网站Physics重点报道。 

  现实生活中,没有摩擦很难想象,但是摩擦也会导致巨大的能量浪费。为了减少这种浪费,润滑剂在从铰链到汽车引擎等许多领域被广泛应用。然而,全球仍有约1/3的用于运输的燃料能源消耗在克服摩擦上。当系统尺寸缩小到微芯片的大小时,情况就变得更糟。在微观尺度,物体极高的表面积—体积比,使得摩擦这种表面现象变得十分显著。而且,由于尺度的原因,在微器件中加入润滑剂十分困难。

  在这项研究中,论文第一作者、清华大学微纳米力学中心博士生杨佳瑞,基于激光刀口法建立了一套检测石墨片自回复运动的设备,并成功的测量了其速度。实验结果表明,一个边长为3微米的方形石墨纳米级薄片在自回复运动中可以达到每小时90公里的滑动速度。有趣的是,这一最高速度是在将石墨片加热到100℃以上才能达到。研究人员对此现象的解释是,温度的升高增加了石墨片原子的振动,帮助它克服了由不可避免的界面缺陷导致的阻碍滑动的势垒。

  开展这项研究之前,超润滑的实验只能在微米每秒的速度下进行,大致等同于蜗牛的爬行速度。而且这些实验条件苛刻,要求超高真空以及纳米级的接触点。对此,郑泉水教授表示:“在如此大的尺度下观察到高速超润滑,并且是在普通的大气环境下,这为超润滑概念提供了实用化的可能。”


(http://news.tsinghua.edu.cn)
厘米级别,用于硬盘刚刚好
gyggyg2010 发表于 2013-11-27 21:07
lz太懒,文章转帖一半,应用部分才有有趣的联想
我是有意这样,毕竟是转帖,对来源还是应尊重
我一开始看作是活塞运动的润滑
fdbiology 发表于 2013-11-22 10:39
摩擦减少了,地球会不会变冷啊?
这都哪跟哪……太高估这点热量了。
军网较慌!!